Patents by Inventor Hsien-Wen Liu

Hsien-Wen Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130017684
    Abstract: A process of forming a slit in a substrate is provided. A mask layer is formed on a substrate, wherein the mask layer does not include carbon. An etching process is performed to be substrate by using the mask layer as a mask, so as to form a slit in the substrate. The etching gas includes Cl2, CF4 and CHF3, a molar ratio of CF4 to CHF3 is about 0.5-0.8, and a molar ratio of F to Cl is about 0.4-0.8, for example. Further, the step of performing the etching process simultaneously removes the mask layer.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 17, 2013
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Wen-Chieh Wang, Yi-Nan Chen, Hsien-Wen Liu
  • Patent number: 8335119
    Abstract: A method of inspecting a memory cell is provided, including: providing a semiconductor substrate with a capacitor formed therein and a transistor formed thereon, wherein the transistor is electrically connected to the capacitor; inspecting a size of a top surface of the capacitor and a pitch between the capacitor and the transistor electrically connected thereto by an optical measuring system, thereby obtaining a first measurement data and a second measurement data; and comparing the first and second measurement data with designed specifications of the capacitor and transistor, thereby determining functionality of the memory cell comprising the capacitor and the transistor.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: December 18, 2012
    Assignee: Nanya Technology Corporation
    Inventors: Tzu-Ching Tsai, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20120309192
    Abstract: A semiconductor process is provided. A mask layer is formed on a substrate and has a first opening exposing a portion of the substrate. Using the mask layer as a mask, a dry etching process is performed on the substrate to form a second opening therein. The second opening has a bottom portion and a side wall extending upwards and outwards from the bottom portion, wherein the bottom portion is exposed by the first opening and the side wall is covered by the mask layer. Using the mask layer as a mask, a vertical ion implantation process is performed on the bottom portion. A conversion process is performed, so as to form converting layers on the side wall and the bottom portion of the second opening, wherein a thickness of the converting layer on the side wall is larger than a thickness of the converting layer on the bottom portion.
    Type: Application
    Filed: June 6, 2011
    Publication date: December 6, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Wen-Chieh Wang, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20120305525
    Abstract: A method of reducing striation on a sidewall of a recess is provided. The method includes the steps of providing a substrate covered with a photoresist layer. Then, the photoresist layer is etched to form a patterned photoresist layer. Later, a repairing process is performed by treating the patterned photoresist layer with a repairing gas which is selected from the group consisting of CF4, HBr, O2 and He. Next, the substrate is etched by taking the patterned photoresist layer as a mask after the repairing process. Finally, the patterned photoresist layer is removed.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Inventors: Hsiu-Chun Lee, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20120309155
    Abstract: A semiconductor process is provided. A substrate is provided, gates each including a silicon layer, a silicide layer and a cap layer are formed thereon, and doped regions are formed at two sides of each gate. An insulating layer is formed to cover a memory region and a periphery region. First contact holes are formed in the insulating layer in the memory region, and each first contact hole is disposed between the two adjacent gates and exposes the doped region. A contact plug is formed in each first contact hole to electrically connect the doped region. A patterned mask layer is formed on the substrate to cover the memory region and expose a portion of the periphery region. Using the patterned mask layer as a mask, second and third contact holes are formed in the insulating layer in the periphery region, to expose the silicide layer and the doped region.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 6, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Wen-Chieh Wang, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20120302049
    Abstract: The disclosure provides a method for wafer implantation including the following steps: providing a wafer, wherein the wafer comprises a central circular portion, and a peripheral annular portion adjacent to a edge of the wafer, and wherein the central circular portion and the peripheral annular portion are concentric; and implanting ion beams into the wafer, wherein the central circular portion has a first average implantation dose and the peripheral annular portion has a second average implantation dose, and the first average implantation dose and the second first average implantation dose are different.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Ping Hsu, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20120299185
    Abstract: A slit recess channel gate is further provided. The slit recess channel gate includes a substrate, a gate dielectric layer, a first conductive layer and a second conductive layer. The substrate has a first trench. The gate dielectric layer is disposed on a surface of the first trench and the first conductive layer is embedded in the first trench. The second conductive layer is disposed on the first conductive layer and aligned with the first conductive layer above the main surface, wherein a bottom surface area of the second conductive layer is substantially smaller than a top surface area of the second conductive layer. The present invention also provides a method of forming the slit recess channel gate.
    Type: Application
    Filed: May 27, 2011
    Publication date: November 29, 2012
    Inventors: Tieh-Chiang Wu, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20120298992
    Abstract: A test layout structure includes a substrate, a first oxide region of a first height, a second oxide region of a second height, a plurality of border regions, and a test layout pattern. The first oxide region is disposed on the substrate. The second oxide region is also disposed on the substrate and adjacent to the first oxide region. The first height is substantially different from the second height. A plurality of border regions are disposed between the first oxide region and the second oxide region. The test layout pattern includes a plurality of individual sections. A test region is disposed between two of the adjacent individual sections which are parallel to each other.
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Inventors: Chin-Te Kuo, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20120302065
    Abstract: The present invention relates to a pulse-plasma etching method and apparatus for preparing a depression structure with reduced bowing. The pulse-plasma etching apparatus comprises a container, an upper electrode plate, a lower electrode plate, a gas source, a first ultrahigh RF power supply, a bias RF power supply, and a pulsing module. When the pulsing module supplies an ultrahigh-frequency voltage between the upper electrode plate and the lower electrode plate, an ultrahigh-frequency voltage is switched to the off state, and a large amount of electrons pass through the plasma and reach the substrate to neutralize the positive ions during the duration of the off state (Toff).
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Chih Ching Lin, Yi Nan Chen, Hsien Wen Liu
  • Publication number: 20120302062
    Abstract: A method of via formation in a semiconductor device includes the following steps of providing a photoresist with a photoresist pattern defining an opening of a via, wherein the photoresist comprising a thermally cross-linking material is disposed on a structure layer; dry-etching the structure layer to a first depth through the opening; baking the thermally cross-linking material to reduce the opening; and dry-etching the structure layer to a second depth through the reduced opening, wherein the second depth is greater than the first depth.
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Chih Ching Lin, Yi Nan Chen, Hsien Wen Liu
  • Publication number: 20120301833
    Abstract: The present invention provides a method of reducing microloading effect by using a photoresist layer as a buffer. The method includes: providing a substrate defined with a dense region and an isolated region. Then, a dense feature pattern and an isolated feature pattern are formed on the dense region and the isolated region respectively. After that, a photoresist layer is formed to cover the isolated region. Finally, the substrate and the photoresist layer are etched by taking the dense feature pattern and the isolated feature pattern as a mask.
    Type: Application
    Filed: May 29, 2011
    Publication date: November 29, 2012
    Inventors: Hsiu-Chun Lee, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20120302060
    Abstract: The disclosure provides a method for manufacturing a memory device, including: providing a plurality of gate structures formed on a substrate, wherein the gate structures comprise a cap layer disposed on the top of the gate structure, and each two adjacent gate structures are separated by a gap; blanketly forming a polysilicon layer on the substrate to fill the gap; performing a planarization process to the polysilicon layer, obtaining a polysilicon plug; and performing an oxidation process after the planarization process, converting a part of the polysilicon plug and a residual polysilicon layer over the gate structure to silicon oxide.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Ping Hsu, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20120299668
    Abstract: A cavity filter includes a base member defining therein a resonant chamber, an antenna port disposed at the center of the resonant chamber, two signal input/output ports respectively disposed at two distal ends of the resonant chamber for signal input/output, a cover member covering the base member, two feedback channels disposed in the base member at two opposite lateral sides relative to the resonant chamber and respectively connected between the signal ports and the antenna port, and wave-absorbing components respectively mounted in the feedback channels for removing surge waves from feedback frequency components in the feedback channels.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Inventors: Hsien-Wen LIU, Chien-Chih LEE, Chin-Hsuan TSAI, Shang-Yu YANG
  • Publication number: 20120302070
    Abstract: A method for performing pulse-etching in a semiconductor device includes the steps of providing a semiconductor substrate, wherein a metal layer is disposed on the semiconductor substrate, and a hard mask layer is blanketed over the metal layer; introducing the semiconductor substrate into a processing container; introducing, into the processing container, etching gases in which a deposition-type gas composed of at least two of C, H, and F is added to etching gas selected from the group consisting of Cl2 gas, BCl3 gas, HBr gas, and the combination thereof; applying a pulse-modulated high-frequency voltage between a pair of electrodes that are provided in the processing container so as to be opposed to each other and to hold the semiconductor substrate, such that the high-frequency voltage is turned on and off to establish a duty ratio; generating a plasma between the pair of electrodes; and etching the semiconductor substrate using the plasma.
    Type: Application
    Filed: May 26, 2011
    Publication date: November 29, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Chih Ching Lin, Yi Nan Chen, Hsien Wen Liu
  • Publication number: 20120302030
    Abstract: A method of fabricating a deep trench capacitor includes the steps as follows. Firstly, a substrate having a trench therein is provided. Then, a bottom electrode is formed in the substrate around the trench. Later, a capacitor dielectric layer is formed to surround an inner sidewall of the trench. After that, a first conductive layer is form to fill up the trench. Subsequently, a material layer is formed on the substrate. Later, a hole is formed in the material layer, wherein the hole is directly above the trench. Finally, a second conductive layer is form to fill in the hole.
    Type: Application
    Filed: May 29, 2011
    Publication date: November 29, 2012
    Inventors: Hsiu-Chun Lee, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20120302031
    Abstract: The present invention relates to a plasma etching method and apparatus for preparing high-aspect-ratio structures. The method includes the steps of placing the substrate into a plasma etching apparatus, wherein the plasma etching apparatus includes an upper electrode plate and a lower electrode plate; continuously supplying an upper source RF power and a DC power to the upper electrode plate; and discontinuously supplying a bias RF power to the lower electrode plate. When the bias RF power is switched to the off state, a large amount of secondary electrons pass through the bulk plasma and reach the substrate to neutralize the positive ions during the duration time of the off state (Toff).
    Type: Application
    Filed: May 23, 2011
    Publication date: November 29, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Chang Ming Wu, Yi Nan Chen, Hsien Wen Liu
  • Publication number: 20120293196
    Abstract: The disclosure provides a test key structure for monitoring gate conductor to deep trench misalignment and a testing method thereof.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Ping Hsu, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20120295408
    Abstract: The method for manufacturing a memory device is provided. The method includes: implanting a first impurity into the substrate adjacent to the gate conductor structure to form a source region on a first side of the gate conductor structure and a drain region on a second side of the gate conductor structure; implanting a second impurity into the substrate to form a halo implantation region disposed adjacent to the source region, wherein the halo implantation region has a doping concentration which does not degrade a data retention time of the memory device; and performing an annealing process to the drain region, forming a diffusion region under the drain region, wherein the process temperature of the annealing process is controlled to ensure that the diffusion region has a doping concentration substantially equal to a threshold concentration which maintains an electrical connection between the drain and the deep trench capacitor.
    Type: Application
    Filed: May 19, 2011
    Publication date: November 22, 2012
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Ping Hsu, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20120288966
    Abstract: A method for decapsulating an integrated circuit package in the absence of a mask is disclosed. First, a package is provided. The package includes at least a circuit element and a molding compound enclosing the circuit. Second, a caustic solution is simultaneously provided and drained. The caustic solution is capable of etching the molding compound while in continuous contact with the molding compound to etch the molding compound. As a consequence, the molding compound is removed so that the circuit element in the package is substantially exposed.
    Type: Application
    Filed: May 12, 2011
    Publication date: November 15, 2012
    Inventors: Ming-Teng Hsieh, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20120288968
    Abstract: A method for repairing a semiconductor structure having a current-leakage issue includes finding a semiconductor structure having a current-leakage issue through application of a test voltage from an electric test device and applying an electric power stress to the semiconductor structure to melt a stringer or a bridge between two conductive elements or to allow the stringer or the bridge to be oxidized.
    Type: Application
    Filed: May 12, 2011
    Publication date: November 15, 2012
    Inventors: Ming-Teng Hsieh, Yi-Nan Chen, Hsien-Wen Liu