Patents by Inventor HsinChen Chung

HsinChen Chung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10344195
    Abstract: Systems and methods for controlling flow in downhole operations are described. Systems and methods may include a composition including a fracturing fluid base; one or more ionic compounds; a polymer; a crosslinking agent; and a pH modifier. A breaker may be provided in the composition. The composition may be provided to a formation to control flow, and syneresis may occur.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: July 9, 2019
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Jason Eric Maxey, HsinChen Chung
  • Patent number: 10344205
    Abstract: A system and methods for breaking friction reducers in subterranean formations in-situ during hydraulic fracturing operations are disclosed. A method of fracturing a subterranean formation is disclosed, including providing a well treating fluid, adding a friction reducer into a water phase of an emulsion, adding a breaker into the water phase, and injecting the well treating fluid into the subterranean formation at a pressure sufficient to fracture the subterranean formation and invert the emulsion and double emulsion, thereby allowing the breaker to break the friction reducer. A friction reducer-breaker system for breaking a friction reducer polymer in-situ is also disclosed, including an oil phase, a water phase including friction reducer polymers and breakers in double emulsion dispersed throughout the water phase, wherein the emulsion and double emulsion are configured to invert under shear, thereby providing for mixing between the friction reducer polymers and the breakers.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: July 9, 2019
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: HsinChen Chung, Prashant Dinkar Chopade
  • Publication number: 20190048246
    Abstract: A aqueous solution that includes water, from 100,000 to 300,000 ppm of dissolved solids, from 0.5 to 3 gallons per thousand gallons of a water-in-oil emulsion, and an inverting surfactant. The water-in oil emulsion includes an oil phase and an aqueous phase where the oil phase is a continuous phase comprising an inert hydrophobic liquid and the aqueous phase is present as dispersed distinct particles in the oil phase. The aqueous phase contains water, a water soluble polymer, and surfactants. The water soluble polymer includes 30 to 50 weight percent of a non-ionic monomer, 5 to 15 weight percent of a sulfonic acid containing monomer, and 40 to 60 weight percent of a cationic monomer. The water soluble polymer makes up from 10 to 35 weight percent of the water-in-oil emulsion.
    Type: Application
    Filed: February 12, 2018
    Publication date: February 14, 2019
    Applicant: SOLVAY USA INC.
    Inventors: HsinChen CHUNG, Yuntao Thomas HU, Xiangnan YE, Narongsak TONMUKAYAKUL, Michael A. McCABE, Kevin Walter FREDERICK, Shih-Ruey Tom CHEN, Randy Jack LOEFFLER
  • Publication number: 20180355240
    Abstract: The present disclosure generally relates to a system and methods for breaking friction reducers in subterranean formations in-situ during hydraulic fracturing operations. A method of fracturing a subterranean formation is disclosed, including providing a well treating fluid, adding a friction reducer into a water phase of an emulsion, adding a breaker into the water phase, and injecting the well treating fluid into the subterranean formation at a pressure sufficient to fracture the subterranean formation and invert the emulsion and double emulsion, thereby allowing the breaker to break the friction reducer. A friction reducer-breaker system for breaking a friction reducer polymer in-situ is also disclosed, including an oil phase, a water phase including friction reducer polymers and breakers in double emulsion dispersed throughout the water phase, wherein, the emulsion and double emulsion are configured to invert under shear, thereby providing for mixing between the friction reducer polymers and the breakers.
    Type: Application
    Filed: October 27, 2015
    Publication date: December 13, 2018
    Applicant: Halliburton Energy Services, Inc.
    Inventors: HsinChen Chung, Prashant Dinkar Chopade
  • Patent number: 9834716
    Abstract: Various embodiments disclosed relate to acidizing compositions including an ampholyte polymer. Various embodiments provide a method of treating a subterranean formation. The method can include placing in a subterranean formation an ampholyte polymer including an ethylene repeating unit including a —C(O)NH2 group, an ethylene repeating unit including an —S(O)2OR1 group, and an ethylene repeating unit including an —N+R23X? group. At each occurrence, R1 can be independently selected from the group consisting of —H and a counterion. At each occurrence, R2 can be independently substituted or unsubstituted (C1-C20)hydrocarbyl. At each occurrence, X? can be independently a counterion.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: December 5, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: HsinChen Chung, Jason Eric Maxey
  • Patent number: 9816022
    Abstract: Ampholyte polymeric compound that comprises at least one nonionic monomer, at least one sulfonic acid-containing monomer, and at least one cationic monomer may be useful in viscosifying treatment fluids for use in subterranean operations at a concentration of about 0.5 v/v % to about 30 v/v % of the treatment fluid. Such operations may involve introducing the treatment fluid into a wellbore penetrating a subterranean formation optionally at a pressure sufficient to create or extend at least one fracture in the subterranean formation.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: November 14, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: HsinChen Chung, Yuntao Thomas Hu, Xiangnan Ye, Narongsak Tonmukayakul, Michael A. McCabe, Kevin Walter Frederick, Shih-Ruey Tom Chen, Randy Jack Loeffler
  • Patent number: 9732265
    Abstract: Various embodiments disclosed relate to a composition including a crosslinkable ampholyte polymer or a crosslinked product of the same, methods of making and using the composition, and systems including the composition. In various embodiments, the present invention provides a method of treating a subterranean formation. The method can include obtaining or providing a composition including a crosslinkable ampholyte polymer. The crosslinkable ampholyte polymer can include an ethylene repeating unit including a —C(O)NH2 group, an ethylene repeating unit including a —S(O)2OR1 group, and an ethylene repeating unit comprising an —N+R23X? group. At each occurrence, R1 can be independently selected from the group consisting of —H and a counterion. At each occurrence, R2 can be independently substituted or unsubstituted (C1-C20)hydrocarbyl. At each occurrence, X? can be independently a counterion. The composition can also include at least one crosslinker.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: August 15, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: HsinChen Chung, Yuntao Thomas Hu, Narongsak Tonmukayakul, Harvey Fitzpatrick
  • Patent number: 9702239
    Abstract: Introducing a treatment fluid comprising proppant particulates into a subterranean formation, the treatment fluid comprising a high salt concentration base fluid, a charged polymeric gelling agent, and proppant particulates suspended therein, wherein the high salt concentration base fluid comprises a concentration of salt in the range of from about 0.5% to saturation, and wherein the treatment fluid has a bulk viscosity of from about 30 cP to about 150 cP at a shear rate of about 40 sec?1.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: July 11, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Aaron Gene Russell, Dipti Singh, HsinChen Chung, Xiangnan Ye
  • Patent number: 9695350
    Abstract: Ampholyte polymeric compounds that comprise at least one nonionic monomer, at least one sulfonic acid-containing monomer, and at least one cationic monomer may be useful as friction reducing agents in treatment fluids for use in subterranean operations at a concentration of about 0.001 v/v % to about 0.5 v/v % of the treatment fluid. Such operations may involve introducing the treatment fluid into a wellbore penetrating a subterranean formation optionally at a rate and/or a pressure sufficient to create or extend at least one fracture in the subterranean formation.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: July 4, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: HsinChen Chung, Yuntao Thomas Hu, Xiangnan Ye, Narongsak Tonmukayakul, Michael A. McCabe, Kevin Walter Frederick, Shih-Ruey Tom Chen, Randy Jack Loeffler
  • Publication number: 20170096597
    Abstract: Various embodiments disclosed relate to compositions for subterranean treatment including a friction-reducing polymer and a surfactant. In various embodiments, the present invention provides a method including obtaining or providing a composition including a friction reducing polymer and a surfactant. The method also includes placing the composition in the subterranean formation.
    Type: Application
    Filed: May 7, 2014
    Publication date: April 6, 2017
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Yuntao Thomas Hu, HsinChen Chung, Chandra Sekhar Palla-Venkata
  • Patent number: 9410877
    Abstract: Computer-implemented methods, software, and systems for determining a property of a wellbore fluid are disclosed. In some implementations, a computing system receives an image of a first sample of the wellbore fluid filling a conduit to a threshold volume of the conduit. The computing system determines a first time duration of the first sample of the wellbore fluid filling the conduit to the threshold volume of the conduit based on the image of the first sample. The computing system receives an image of a second sample of the wellbore fluid filling the conduit to the threshold volume of the conduit. The computing system determines a second time duration of the second sample of the wellbore fluid filling the conduit to the threshold volume of the conduit based on the image of the second sample. A property of the wellbore fluid is determined based on a difference between the first and second time durations.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: August 9, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Jason Eric Maxey, Xiangnan Ye, HsinChen Chung, Narongsak Tonmukayakul
  • Publication number: 20160160107
    Abstract: Systems and methods for controlling flow in downhole operations are described. Systems and methods may include a composition including a fracturing fluid base; one or more ionic compounds; a polymer; a crosslinking agent; and a pH modifier. A breaker may be provided in the composition. The composition may be provided to a formation to control flow, and syneresis may occur.
    Type: Application
    Filed: August 26, 2013
    Publication date: June 9, 2016
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Jason Eric Maxey, HsinChen Chung
  • Publication number: 20150133347
    Abstract: A aqueous solution that includes water, from 100,000 to 300,000 ppm of dissolved solids, from 0.5 to 3 gallons per thousand gallons of a water-in-oil emulsion, and an inverting surfactant. The water-in oil emulsion includes an oil phase and an aqueous phase where the oil phase is a continuous phase comprising an inert hydrophobic liquid and the aqueous phase is present as dispersed distinct particles in the oil phase. The aqueous phase contains water, a water soluble polymer, and surfactants. The water soluble polymer includes 30 to 50 weight percent of a non-ionic monomer, 5 to 15 weight percent of a sulfonic acid containing monomer, and 40 to 60 weight percent of a cationic monomer. The water soluble polymer makes up from 10 to 35 weight percent of the water-in-oil emulsion.
    Type: Application
    Filed: May 30, 2014
    Publication date: May 14, 2015
    Inventors: HsinChen Chung, Yuntao Thomas Hu, Xiangnan Ye, Narongsak Tonmukayakul, Michael A. McCabe, Kevin Walter Frederick, Shih-Ruey Tom Chen, Randy Jack Loeffler
  • Publication number: 20150000910
    Abstract: Methods of treating a subterranean formations including providing a treatment fluid comprising a high salt concentration base fluid, a charged polymeric gelling agent, and proppant particulates suspended therein; wherein the high salt concentration base fluid comprises a concentration of salt in the range of from about 0.5% to saturation, and wherein the treatment fluid has a bulk viscosity of from about 30 cP to about 150 cP at a shear rate of about 40 sec?1; and introducing the treatment fluid comprising the proppant particulates into the subterranean formation.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Aaron Gene Russell, Dipti Singh, HsinChen Chung, Xiangnan Ye
  • Publication number: 20140367108
    Abstract: Various embodiments disclosed relate to acidizing compositions including an ampholyte polymer. Various embodiments provide a method of treating a subterranean formation. The method can include placing in a subterranean formation an ampholyte polymer including an ethylene repeating unit including a —C(O)NH2 group, an ethylene repeating unit including an —S(O)2OR1 group, and an ethylene repeating unit including an —N+R23X? group. At each occurrence, R1 can be independently selected from the group consisting of —H and a counterion. At each occurrence, R2 can be independently substituted or unsubstituted (C1-C20)hydrocarbyl. At each occurrence, X? can be independently a counterion.
    Type: Application
    Filed: August 28, 2014
    Publication date: December 18, 2014
    Inventors: HsinChen Chung, Jason Eric Maxey
  • Publication number: 20140352962
    Abstract: Ampholyte polymeric compounds that comprise at least one nonionic monomer, at least one sulfonic acid-containing monomer, and at least one cationic monomer may be useful as friction reducing agents in treatment fluids for use in subterranean operations at a concentration of about 0.001 v/v % to about 0.5 v/v % of the treatment fluid. Such operations may involve introducing the treatment fluid into a wellbore penetrating a subterranean formation optionally at a rate and/or a pressure sufficient to create or extend at least one fracture in the subterranean formation.
    Type: Application
    Filed: June 28, 2013
    Publication date: December 4, 2014
    Inventors: HsinChen Chung, Yuntao Thomas Hu, Xiangnan Ye, Narongsak Tonmukayakul, Michael A. McCabe, Kevin Walter Frederick, Shih-Ruey Tom Chen, Randy Jack Loeffler
  • Publication number: 20140352969
    Abstract: Various embodiments disclosed relate to a composition including a crosslinkable ampholyte polymer or a crosslinked product of the same, methods of making and using the composition, and systems including the composition. In various embodiments, the present invention provides a method of treating a subterranean formation. The method can include obtaining or providing a composition including a crosslinkable ampholyte polymer. The crosslinkable ampholyte polymer can include an ethylene repeating unit including a —C(O)NH2 group, an ethylene repeating unit including a —S(O)2OR1 group, and an ethylene repeating unit comprising an —N+R23X? group. At each occurrence, R1 can be independently selected from the group consisting of —H and a counterion. At each occurrence, R2 can be independently substituted or unsubstituted (C1-C20)hydrocarbyl. At each occurrence, X? can be independently a counterion. The composition can also include at least one crosslinker.
    Type: Application
    Filed: March 11, 2014
    Publication date: December 4, 2014
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: HsinChen Chung, Yuntao Thomas Hu, Narongsak Tonmukayakul, Harvey Fitzpatrick
  • Publication number: 20140352960
    Abstract: Ampholyte polymeric compound that comprises at least one nonionic monomer, at least one sulfonic acid-containing monomer, and at least one cationic monomer may be useful in viscosifying treatment fluids for use in subterranean operations at a concentration of about 0.5 v/v % to about 30 v/v % of the treatment fluid. Such operations may involve introducing the treatment fluid into a wellbore penetrating a subterranean formation optionally at a pressure sufficient to create or extend at least one fracture in the subterranean formation.
    Type: Application
    Filed: June 28, 2013
    Publication date: December 4, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: HsinChen Chung, Yuntao Thomas Hu, Xiangnan Ye, Narongsak Tonmukayakul, Michael A. McCabe, Kevin Walter Frederick, Shih-Ruey Tom Chen, Randy Jack Loeffler
  • Publication number: 20140105446
    Abstract: Computer-implemented methods, software, and systems for determining a property of a wellbore fluid are disclosed. In some implementations, a computing system receives an image of a first sample of the wellbore fluid filling a conduit to a threshold volume of the conduit. The computing system determines a first time duration of the first sample of the wellbore fluid filling the conduit to the threshold volume of the conduit based on the image of the first sample. The computing system receives an image of a second sample of the wellbore fluid filling the conduit to the threshold volume of the conduit. The computing system determines a second time duration of the second sample of the wellbore fluid filling the conduit to the threshold volume of the conduit based on the image of the second sample. A property of the wellbore fluid is determined based on a difference between the first and second time durations.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Jason Eric Maxey, Xiangnan Ye, HsinChen Chung, Narongsak Tonmukayakul