Patents by Inventor Hsin-Chih Chiang
Hsin-Chih Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240379791Abstract: A semiconductor structure includes semiconductor structure includes a metal gate structure, a plurality of dielectric pillars disposed in the metal gate structure, a source/drain structure disposed at tow side of the metal gate structure, and at least a first connecting structure disposed over one of the dielectric pillars and coupled to the metal gate structure. The first connecting structure overlaps the one of the dielectric pillars entirely from a top view. An area of the first connecting structure is greater than an area of the one of the dielectric pillars from the top view.Type: ApplicationFiled: May 10, 2023Publication date: November 14, 2024Inventors: TA-CHUAN LIAO, CHEN-LIANG CHU, HSIN-CHIH CHIANG, MING-TA LEI, TA-YUAN KUNG
-
Publication number: 20240379845Abstract: A medium voltage transistor of a level shifter circuit may include a p-well region in a substrate. Moreover, the medium voltage transistor may include an n-type lightly-doped source/drain (NLDD) region in which an N+ source/drain region of the medium voltage transistor is included. The light doping in the NLDD region enables a threshold voltage (Vi) to be reduced while enabling medium voltage operation at the N+ source/drain region. To reduce the amount of current leakage in the medium voltage transistor due to the light doping in the NLDD region, a buffer layer may be included over and/or on a portion of the NLDD region under a gate structure of the medium voltage transistor. The NLDD region and the thermal region of the medium voltage transistor enables the threshold voltage of the medium voltage transistor while maintaining the same current leakage performance or reducing current leakage in the medium voltage transistor.Type: ApplicationFiled: May 11, 2023Publication date: November 14, 2024Inventors: Chen-Liang CHU, Hsin-Chih CHIANG, Ruey-Hsin LIU, Ta-Yuan KUNG, Ta-Chuan LIAO, Chih-Wen YAO, Ming-Ta LEI
-
Publication number: 20240321894Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. The integrated chip includes a first well region, a second well region, and a third well region disposed within a semiconductor substrate. The second well region is disposed between the first and second well regions. A first source/drain region is in the first well region. A second source/drain region is in the second well region. A gate structure is on the semiconductor substrate and spaced laterally between the first and second source/drain regions. A contact region is disposed in the third well region. A conductive structure is on the semiconductor substrate and spaced laterally between the second source/drain region and the contact region.Type: ApplicationFiled: May 20, 2024Publication date: September 26, 2024Inventors: Hsin-Chih Chiang, Tung-Yang Lin, Ruey-Hsin Liu, Ming-Ta Lei
-
Publication number: 20240271287Abstract: The present disclosure provides a gas sensor. The gas sensor includes a substrate, an insulating layer over the substrate, a conductor layer over and in contact with a top surface of the substrate, and a gas sensing film. The conductor layer includes a conductive pattern having a plurality of openings, and the conductive pattern is embedded in the insulating layer. The gas sensing film is formed over a portion of the conductive pattern.Type: ApplicationFiled: April 17, 2024Publication date: August 15, 2024Inventors: MING-TA LEI, CHIA-HUA CHU, HSIN-CHIH CHIANG, TUNG-TSUN CHEN, CHUN-WEN CHENG
-
Patent number: 12027526Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. The integrated chip includes a semiconductor substrate having a device substrate overlying a handle substrate and an insulator layer disposed between the device substrate and the handle substrate. A gate electrode overlies the device substrate between a drain region and a source region. A conductive via extends through the device substrate and the insulator layer to contact the handle substrate. A first isolation structure is disposed within the device substrate and comprises a first isolation segment disposed laterally between the gate electrode and the conductive via. A contact region is disposed within the device substrate between the first isolation segment and the conductive via. A conductive gate electrode directly overlies the first isolation segment and is electrically coupled to the contact region.Type: GrantFiled: September 21, 2022Date of Patent: July 2, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Hsin-Chih Chiang, Tung-Yang Lin, Ruey-Hsin Liu, Ming-Ta Lei
-
Patent number: 11987891Abstract: The present disclosure provides a gas sensor. The gas sensor includes a substrate, a conductor layer over the substrate, wherein the conductor layer includes a conductive pattern including a plurality of openings, the openings being arranged in a repeating pattern, an insulating layer in the plurality of openings and over a top surface of the conductive pattern, wherein the conductive pattern is embedded in the insulating layer, and a gas sensing film over a portion of the insulating layer.Type: GrantFiled: June 20, 2022Date of Patent: May 21, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Ming-Ta Lei, Chia-Hua Chu, Hsin-Chih Chiang, Tung-Tsun Chen, Chun-Wen Cheng
-
Publication number: 20230014120Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. The integrated chip includes a semiconductor substrate having a device substrate overlying a handle substrate and an insulator layer disposed between the device substrate and the handle substrate. A gate electrode overlies the device substrate between a drain region and a source region. A conductive via extends through the device substrate and the insulator layer to contact the handle substrate. A first isolation structure is disposed within the device substrate and comprises a first isolation segment disposed laterally between the gate electrode and the conductive via. A contact region is disposed within the device substrate between the first isolation segment and the conductive via. A conductive gate electrode directly overlies the first isolation segment and is electrically coupled to the contact region.Type: ApplicationFiled: September 21, 2022Publication date: January 19, 2023Inventors: Hsin-Chih Chiang, Tung-Yang Lin, Ruey-Hsin Liu, Ming-Ta Lei
-
Patent number: 11508757Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. The integrated chip includes a semiconductor substrate having a device substrate overlying a handle substrate and an insulator layer disposed between the device substrate and the handle substrate. A gate electrode overlies the device substrate between a drain region and a source region. A conductive via extends through the device substrate and the insulator layer to contact the handle substrate. A first isolation structure is disposed within the device substrate and comprises a first isolation segment disposed laterally between the gate electrode and the conductive via. A contact region is disposed within the device substrate between the first isolation segment and the conductive via. A conductive gate electrode directly overlies the first isolation segment and is electrically coupled to the contact region.Type: GrantFiled: May 18, 2021Date of Patent: November 22, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Hsin-Chih Chiang, Tung-Yang Lin, Ruey-Hsin Liu, Ming-Ta Lei
-
Publication number: 20220333251Abstract: The present disclosure provides a gas sensor. The gas sensor includes a substrate, a conductor layer over the substrate, wherein the conductor layer includes a conductive pattern including a plurality of openings, the openings being arranged in a repeating pattern, an insulating layer in the plurality of openings and over a top surface of the conductive pattern, wherein the conductive pattern is embedded in the insulating layer, and a gas sensing film over a portion of the insulating layer.Type: ApplicationFiled: June 20, 2022Publication date: October 20, 2022Inventors: MING-TA LEI, CHIA-HUA CHU, HSIN-CHIH CHIANG, TUNG-TSUN CHEN, CHUN-WEN CHENG
-
Patent number: 11414763Abstract: The present disclosure provides a method of manufacturing a gas sensor. The method includes the following operations: a substrate is received; a conductor layer is formed over the substrate; the conductor layer is patterned to form a conductor with a plurality of openings by an etching operation, the openings being arranged in a repeating pattern, a minimal dimension of the opening being about 4 micrometers; and a gas-sensing film is formed over the conductor.Type: GrantFiled: December 6, 2019Date of Patent: August 16, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Ming-Ta Lei, Chia-Hua Chu, Hsin-Chih Chiang, Tung-Tsun Chen, Chun-Wen Cheng
-
Publication number: 20220223625Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. The integrated chip includes a semiconductor substrate having a device substrate overlying a handle substrate and an insulator layer disposed between the device substrate and the handle substrate. A gate electrode overlies the device substrate between a drain region and a source region. A conductive via extends through the device substrate and the insulator layer to contact the handle substrate. A first isolation structure is disposed within the device substrate and comprises a first isolation segment disposed laterally between the gate electrode and the conductive via. A contact region is disposed within the device substrate between the first isolation segment and the conductive via. A conductive gate electrode directly overlies the first isolation segment and is electrically coupled to the contact region.Type: ApplicationFiled: May 18, 2021Publication date: July 14, 2022Inventors: Hsin-Chih Chiang, Tung-Yang Lin, Ruey-Hsin Liu, Ming-Ta Lei
-
Patent number: 11349025Abstract: In some embodiments, the present disclosure relates to a semiconductor device including a semiconductor region over a bulk oxide, which is over a semiconductor substrate. Above the bulk oxide is a lower source region that is laterally spaced from a lower drain region by a lower portion of the semiconductor region. An upper source region is laterally spaced from an upper drain region by an upper portion of the semiconductor region and is vertically spaced from the lower source region and the lower drain region. The upper source region is coupled to the lower source region, and the upper drain region is coupled to the lower drain region. A gate electrode, coupled to the semiconductor substrate and over a gate oxide, is above the upper portion of the semiconductor region. The lower and upper portions of the semiconductor region respectively include a first channel region and a second channel region.Type: GrantFiled: December 20, 2018Date of Patent: May 31, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventor: Hsin-Chih Chiang
-
Publication number: 20200135921Abstract: In some embodiments, the present disclosure relates to a semiconductor device including a semiconductor region over a bulk oxide, which is over a semiconductor substrate. Above the bulk oxide is a lower source region that is laterally spaced from a lower drain region by a lower portion of the semiconductor region. An upper source region is laterally spaced from an upper drain region by an upper portion of the semiconductor region and is vertically spaced from the lower source region and the lower drain region. The upper source region is coupled to the lower source region, and the upper drain region is coupled to the lower drain region. A gate electrode, coupled to the semiconductor substrate and over a gate oxide, is above the upper portion of the semiconductor region. The lower and upper portions of the semiconductor region respectively include a first channel region and a second channel region.Type: ApplicationFiled: December 20, 2018Publication date: April 30, 2020Inventor: Hsin-Chih Chiang
-
Publication number: 20200109476Abstract: The present disclosure provides a method of manufacturing a gas sensor. The method includes the following operations: a substrate is received; a conductor layer is formed over the substrate; the conductor layer is patterned to form a conductor with a plurality of openings by an etching operation, the openings being arranged in a repeating pattern, a minimal dimension of the opening being about 4 micrometers; and a gas-sensing film is formed over the conductor.Type: ApplicationFiled: December 6, 2019Publication date: April 9, 2020Inventors: MING-TA LEI, CHIA-HUA CHU, HSIN-CHIH CHIANG, TUNG-TSUN CHEN, CHUN-WEN CHENG
-
Patent number: 10508345Abstract: Some embodiments of the present disclosure provide a gas sensor in an IOT. The gas sensor includes a substrate, a conductor disposed above the substrate, and a sensing film disposed over the conductor. The conductor has a top-view pattern including a plurality of openings, a minimal dimension of the opening being less than about 4 micrometer; and a perimeter enclosing the opening. Some embodiments of the present disclosure provide a method of manufacturing a gas sensor. The method includes receiving a substrate; forming a conductor, over the substrate; patterning the conductor to form a plurality of openings in the conductor by an etching operation, and forming a gas-sensing film over the conductor. The openings are arranged in a repeating pattern, and a minimal dimension of the opening being about 4 micrometer.Type: GrantFiled: October 8, 2015Date of Patent: December 17, 2019Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.Inventors: Ming-Ta Lei, Chia-Hua Chu, Hsin-Chih Chiang, Tung-Tsun Chen, Chun-Wen Cheng
-
Patent number: 10014288Abstract: A semiconductor device includes a semiconductor substrate. A first semiconductor region is over a portion of the semiconductor substrate to a first depth. A second semiconductor region is in the first semiconductor region. A third semiconductor region is in the first semiconductor region. A fourth semiconductor region is outside the first semiconductor region. A fifth semiconductor region is outside the first semiconductor region to a fifth depth, the fifth semiconductor region being adjacent the fourth semiconductor region. A sixth semiconductor region is below the fifth semiconductor region and to a sixth depth. The sixth depth is equal to the first depth. A first electrode is connected to the third semiconductor region. A second electrode is connected to the fourth and fifth semiconductor regions. The fifth semiconductor region is configured to cause an increase in a current during a cathode to anode positive bias operation between the first and second electrodes.Type: GrantFiled: June 6, 2016Date of Patent: July 3, 2018Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Hsin-Chih Chiang, Tung-Yang Lin, Ruey-Hsin Liu, Ming-Ta Lei
-
Patent number: 9865748Abstract: A semiconductor structure includes a semiconductor substrate having a first electrical portion, a second electrical portion, and a bridged conductive layer. The first electrical portion includes a first semiconductor well, a second semiconductor well in the first semiconductor well, and a third semiconductor well and a fourth semiconductor well in the second semiconductor well. The second electrical portion includes a fifth semiconductor well, a semiconductor layer in the fifth semiconductor well, and a sixth semiconductor well and a seventh semiconductor well in the fifth semiconductor well. The semiconductor layer has separated first and second portions. The bridged conductive layer connects the fourth semiconductor well and the sixth semiconductor well.Type: GrantFiled: April 14, 2017Date of Patent: January 9, 2018Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hsin-Chih Chiang, Tung-Yang Lin, Chih-Chang Cheng, Ruey-Hsin Liu
-
Publication number: 20170222063Abstract: A semiconductor structure includes a semiconductor substrate having a first electrical portion, a second electrical portion, and a bridged conductive layer. The first electrical portion includes a first semiconductor well, a second semiconductor well in the first semiconductor well, and a third semiconductor well and a fourth semiconductor well in the second semiconductor well. The second electrical portion includes a fifth semiconductor well, a semiconductor layer in the fifth semiconductor well, and a sixth semiconductor well and a seventh semiconductor well in the fifth semiconductor well. The semiconductor layer has separated first and second portions. The bridged conductive layer connects the fourth semiconductor well and the sixth semiconductor well.Type: ApplicationFiled: April 14, 2017Publication date: August 3, 2017Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hsin-Chih CHIANG, Tung-Yang LIN, Chih-Chang CHENG, Ruey-Hsin LIU
-
Patent number: 9627551Abstract: The disclosure provides an ultrahigh-voltage (UHV) semiconductor structure including a first electrical portion, a second electrical portion and a bridged conductive layer. In which, the first electrical portion and the second electrical portion are isolated, and directly connected to each other through the bridged conductive layer. Thus, there is no current leakage occurring in the UHV semiconductor structure disclosed in this disclosure. And a method for manufacturing the UHV semiconductor structure also provides herein.Type: GrantFiled: September 13, 2013Date of Patent: April 18, 2017Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hsin-Chih Chiang, Tung-Yang Lin, Chih-Chang Cheng, Ruey-Hsin Liu
-
Publication number: 20170102353Abstract: Some embodiments of the present disclosure provide a gas sensor in an IOT. The gas sensor includes a substrate, a conductor disposed above the substrate, and a sensing film disposed over the conductor. The conductor has a top-view pattern including a plurality of openings, a minimal dimension of the opening being less than about 4 micrometer; and a perimeter enclosing the opening. Some embodiments of the present disclosure provide a method of manufacturing a gas sensor. The method includes receiving a substrate; forming a conductor, over the substrate; patterning the conductor to form a plurality of openings in the conductor by an etching operation, and forming a gas-sensing film over the conductor. The openings are arranged in a repeating pattern, and a minimal dimension of the opening being about 4 micrometer.Type: ApplicationFiled: October 8, 2015Publication date: April 13, 2017Inventors: MING-TA LEI, CHIA-HUA CHU, HSIN-CHIH CHIANG, TUNG-TSUN CHEN, CHUN-WEN CHENG