Patents by Inventor HSIN-CHIH KUO

HSIN-CHIH KUO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11936238
    Abstract: An uninterruptible power apparatus is coupled between a power grid and a load. The uninterruptible power apparatus includes a bypass path, a power conversion module, and a control module. The bypass path is coupled to the power grid through a grid terminal, and coupled to the load through a load terminal. The control module turns off a first thyristor and a second thyristor by injecting a second voltage into the load terminal during a forced commutation period. The control module calculates a magnetic flux offset amount based on an error amount between the second voltage and a voltage command, and provides a compensation command in response to the magnetic flux offset amount. The control module controls the DC/AC conversion circuit to provide a third voltage to the load terminal based on the compensation command and the voltage command.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: March 19, 2024
    Assignee: DELTA ELECTRONICS, INC.
    Inventors: Hsin-Chih Chen, Hung-Chieh Lin, Chao-Lung Kuo, Yi-Ping Hsieh, Chien-Shien Lee
  • Patent number: 11915755
    Abstract: A layout of a semiconductor memory device includes a substrate and a ternary content addressable memory (TCAM). The TCAM is disposed on the substrate and includes a plurality of TCAM bit cells, where at least two of the TCAM bit cells are mirror-symmetrical along an axis of symmetry, and each of the TCAM bit cells includes two storage units electrically connected to two word lines respectively, and a logic circuit electrically connected to the storage units. The logic circuit includes two first reading transistors, and two second reading transistors, where each of the second reading transistors includes a gate and source and drain regions, the source and drain regions of the second reading transistors are electrically connected to two matching lines and the first reading transistors, respectively, where the word lines are disposed parallel to and between the matching lines.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: February 27, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Yen Tseng, Yu-Tse Kuo, Shu-Ru Wang, Chun-Hsien Huang, Hsin-Chih Yu, Meng-Ping Chuang, Li-Ping Huang, Yu-Fang Chen
  • Patent number: 11677248
    Abstract: An electronic device selectively coupled to a first charger and/or a second charger includes a power supply interface, a first comparator, a second comparator, a controller, a first switch circuit, and a second switch circuit. The power supply interface receives a first input voltage and a second input voltage. The first comparator compares the first input voltage with a first reference voltage, so as to generate a first comparison voltage. The second comparator compares the second input voltage with a second reference voltage, so as to generate a second comparison voltage. The controller generates a first control voltage and a second control voltage according to the first comparison voltage and the second comparison voltage. The first switch circuit is selectively enabled or disabled according to the first control voltage. The second switch circuit is selectively enabled or disabled according to the second control voltage.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: June 13, 2023
    Assignee: QUANTA COMPUTER INC.
    Inventors: Hsin-Chih Kuo, Ming-Chieh Lee
  • Patent number: 11621634
    Abstract: An electronic device includes a hysteresis circuit, a voltage divider circuit, a control circuit, and a discharge resistor. The hysteresis circuit has a first threshold voltage and a second threshold voltage. The hysteresis circuit generates a hysteresis voltage according to an output voltage at an output node. The voltage divider circuit generates a divided voltage according to the output voltage and the hysteresis voltage. The control circuit has a reference voltage and monitors the divided voltage. If the divided voltage is lower than the reference voltage, the control circuit will use the discharge resistor to perform a discharging operation to the output voltage at the output node.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: April 4, 2023
    Assignee: QUANTA COMPUTER INC.
    Inventor: Hsin-Chih Kuo
  • Publication number: 20220190618
    Abstract: An electronic device selectively coupled to a first charger and/or a second charger includes a power supply interface, a first comparator, a second comparator, a controller, a first switch circuit, and a second switch circuit. The power supply interface receives a first input voltage and a second input voltage. The first comparator compares the first input voltage with a first reference voltage, so as to generate a first comparison voltage. The second comparator compares the second input voltage with a second reference voltage, so as to generate a second comparison voltage. The controller generates a first control voltage and a second control voltage according to the first comparison voltage and the second comparison voltage. The first switch circuit is selectively enabled or disabled according to the first control voltage. The second switch circuit is selectively enabled or disabled according to the second control voltage.
    Type: Application
    Filed: February 1, 2021
    Publication date: June 16, 2022
    Inventors: Hsin-Chih KUO, Ming-Chieh LEE
  • Patent number: 10972094
    Abstract: An operating circuit including a system circuit and a power control circuit is provided. The system circuit operates according to the voltage of the node. The power control circuit includes a first connection port, a second connection port, a first always-on switch, a second always-on switch, a first current limiter, and a second current limiter. The first connection port is configured to receive first power provided by a first external device. The second connection port is configured to receive second power provided by a second external device. The first always-on switch is coupled to the first connection port to transmit the first power. The second always-on switch is coupled to the second connection port to transmit the second power. The first current limiter is coupled between the first always-on switch and the node. The second current limiter is coupled between the second always-on switch and the node.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: April 6, 2021
    Assignee: QUANTA COMPUTER INC.
    Inventors: Hsin-Chih Kuo, Chuan-Sheng Liao, Yu-Chuan Shih, Ming-Chieh Lee
  • Patent number: 10686360
    Abstract: A power control circuit includes a detection device, a first control device, and a second control device. When the detection signal is changed from lower to higher than the first voltage, the first control device's output is changed to the second potential. When the detection signal is changed from higher to lower than the second voltage, the first control device's output is changed to the first potential. When the detection signal is changed from lower to higher than the third voltage, the second control device's output is changed to the fourth potential. When the detection signal is changed from higher to lower than the fourth voltage, the second control device's output is changed to the third potential. According to the first or second potentials, the circuit device turns on/off the first function. According to the third or fourth potentials, the circuit device turns on/off the second function.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: June 16, 2020
    Assignee: QUANTA COMPUTER INC.
    Inventor: Hsin-Chih Kuo
  • Publication number: 20200136495
    Abstract: A power control circuit includes a detection device, a first control device, and a second control device. When the detection signal is changed from lower to higher than the first voltage, the first control device's output is changed to the second potential. When the detection signal is changed from higher to lower than the second voltage, the first control device's output is changed to the first potential. When the detection signal is changed from lower to higher than the third voltage, the second control device's output is changed to the fourth potential. When the detection signal is changed from higher to lower than the fourth voltage, the second control device's output is changed to the third potential. According to the first or second potentials, the circuit device turns on/off the first function. According to the third or fourth potentials, the circuit device turns on/off the second function.
    Type: Application
    Filed: May 13, 2019
    Publication date: April 30, 2020
    Inventor: Hsin-Chih KUO
  • Publication number: 20190341839
    Abstract: An enable circuit includes a first detection controller, a second detection controller, and an enable switch. The first detection controller has a first input terminal coupled to a first input terminal voltage and a first output terminal. The second detection controller has a second input terminal coupled to the first input terminal voltage and a second output terminal. The enable switch has a control terminal coupled to the second output terminal, a third input terminal coupled to a second input terminal voltage, and a third output terminal. When the first input terminal voltage is higher than the first setting voltage but lower than the second setting voltage, the enable circuit is coupled to ground by the second output terminal, thus the enable switch is turned on to output an enable signal from the third output terminal, wherein the enable signal is provided by a second input terminal voltage.
    Type: Application
    Filed: August 20, 2018
    Publication date: November 7, 2019
    Inventor: Hsin-Chih KUO
  • Patent number: 10453498
    Abstract: A power reset circuit is provided. The power reset circuit has a first terminal coupled to a first power storage element and a second terminal coupled to a second power storage element and a load and includes a discharging control circuit and a switching control circuit. The discharging control circuit induces a short circuit between the second terminal and the ground terminal when a supply voltage at the second terminal is lower than a reset voltage to provide a first discharging path. The switching control circuit provides a conduction path between the first and second terminals when the supply voltage is higher than an end-of-discharging voltage lower than the reset voltage. During a period when the supply voltage is lower than the end-of-discharging voltage, the switching control circuit cuts off the conduction path and provides a second discharging path between the first terminal and the discharging control circuit.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: October 22, 2019
    Assignee: QUANTA COMPUTER INC.
    Inventor: Hsin-Chih Kuo
  • Patent number: 10447140
    Abstract: An enable circuit includes a first detection controller, a second detection controller, and an enable switch. The first detection controller has a first input terminal coupled to a first input terminal voltage and a first output terminal. The second detection controller has a second input terminal coupled to the first input terminal voltage and a second output terminal. The enable switch has a control terminal coupled to the second output terminal, a third input terminal coupled to a second input terminal voltage, and a third output terminal. When the first input terminal voltage is higher than the first setting voltage but lower than the second setting voltage, the enable circuit is coupled to ground by the second output terminal, thus the enable switch is turned on to output an enable signal from the third output terminal, wherein the enable signal is provided by a second input terminal voltage.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: October 15, 2019
    Assignee: QUANTA COMPUTER INC.
    Inventor: Hsin-Chih Kuo
  • Patent number: 10389152
    Abstract: An electronic device includes a main device and an expansion device with an auxiliary battery device. The main device includes a main battery device, a voltage-directing device, a switch device, a first soft-start device, and a comparison device. The voltage-directing device outputs, through an output terminal, the higher of the voltages at a first input terminal and a second input terminal. The first soft-start device is connected to the auxiliary battery device and outputs a voltage to the second input terminal when the main device is connected to the expansion device. The comparison device controls the switch device to enter an off-state when the voltage at the second input terminal is higher than a reference voltage, and controls the switch device to enter an on-state when the voltage at the second input terminal is not higher than the reference voltage.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: August 20, 2019
    Assignee: QUANTA COMPUTER INC.
    Inventor: Hsin-Chih Kuo
  • Publication number: 20190147921
    Abstract: A power reset circuit is provided. The power reset circuit has a first terminal coupled to a first power storage element and a second terminal coupled to a second power storage element and a load and includes a discharging control circuit and a switching control circuit. The discharging control circuit induces a short circuit between the second terminal and the ground terminal when a supply voltage at the second terminal is lower than a reset voltage to provide a first discharging path. The switching control circuit provides a conduction path between the first and second terminals when the supply voltage is higher than an end-of-discharging voltage lower than the reset voltage. During a period when the supply voltage is lower than the end-of-discharging voltage, the switching control circuit cuts off the conduction path and provides a second discharging path between the first terminal and the discharging control circuit.
    Type: Application
    Filed: January 12, 2018
    Publication date: May 16, 2019
    Inventor: Hsin-Chih KUO
  • Patent number: 10263444
    Abstract: A two way charging-discharging circuit structure has a main system and a secondary system. When the main system is connected to the secondary system, the sequence for discharging the battery modules may be controlled, and the to-be-discharging battery module will not be charged. The battery modules of the main system and the secondary system may be charged simultaneously if the power of the power adapter is large enough.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: April 16, 2019
    Assignee: QUANTA COMPUTER INCORPORATED
    Inventors: Hsin-Chih Kuo, Kuo-Hsien Lee
  • Patent number: 10135276
    Abstract: A discharging circuit discharging electrical charges of an external energy storage device coupled to a power transmission line coupled between a power supply device and a load is provided. The discharging circuit includes a current-limiting unit, an internal energy storage unit, a voltage detection unit and a discharge unit. The current-limiting unit is coupled between the power transmission line and a first node. The internal energy storage unit is coupled between the first node and a ground node. The ground node receives a ground level. The voltage detection unit detects a level of the first node. The discharge unit is coupled between the power transmission line and a second node. When the level of the first node is less than a pre-determined level, the voltage detection unit directs the second node to couple to the ground node.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: November 20, 2018
    Assignee: QUANTA COMPUTER INC.
    Inventor: Hsin-Chih Kuo
  • Publication number: 20180309310
    Abstract: An electronic device includes a main device and an expansion device with an auxiliary battery device. The main device includes a main battery device, a voltage-directing device, a switch device, a first soft-start device, and a comparison device. The voltage-directing device outputs, through an output terminal, the higher of the voltages at a first input terminal and a second input terminal. The first soft-start device is connected to the auxiliary battery device and outputs a voltage to the second input terminal when the main device is connected to the expansion device. The comparison device controls the switch device to enter an off-state when the voltage at the second input terminal is higher than a reference voltage, and controls the switch device to enter an on-state when the voltage at the second input terminal is not higher than the reference voltage.
    Type: Application
    Filed: August 14, 2017
    Publication date: October 25, 2018
    Inventor: Hsin-Chih KUO
  • Publication number: 20180205237
    Abstract: A two way charging-discharging circuit structure has a main system and a secondary system. When the main system is connected to the secondary system, the sequence for discharging the battery modules may be controlled, and the to-be-discharging battery module will not be charged. The battery modules of the main system and the secondary system may be charged simultaneously if the power of the power adapter is large enough.
    Type: Application
    Filed: April 12, 2017
    Publication date: July 19, 2018
    Inventors: Hsin-Chih Kuo, Kuo-Hsien Lee
  • Patent number: 9941783
    Abstract: An electronic device is provided. The electronic device includes a power supply module, a system load, a soft start unit, a unidirectional conducting unit and a connector. The system load is electrically coupled with the power supply module. The soft start unit is electrically coupled with the system load and the power supply module. The unidirectional conducting unit is electrically coupled between the soft start unit and the power supply module, so as to prevent the energy from the power supply module from entering the soft start unit. The connector has a power input terminal. The power input terminal is electrically coupled with the soft start unit.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: April 10, 2018
    Assignee: QUANTA COMPUTER INC.
    Inventors: Hsin-Chih Kuo, Ming-Chieh Lee
  • Patent number: 9804648
    Abstract: A dockable device and a power method thereof are provided. The dockable device includes a main device, a main device battery, a connector, a switch and a voltage down-converter. The connector may be coupled to a docking device. The switch, coupled to the main device battery, is configured to be closed to provide power to the main device from the main device battery. The voltage down-converter is configured to provide power with a backup voltage to the main device, wherein the backup voltage is less than a discharge voltage output by a fully discharged main device battery.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: October 31, 2017
    Assignee: QUANTA COMPUTER INC.
    Inventors: Hsin-Chih Kuo, Ming-Chieh Lee, Wen-Lan Yu
  • Publication number: 20170222544
    Abstract: An electronic device is provided. The electronic device includes a power supply module, a system load, a soft start unit, a unidirectional conducting unit and a connector. The system load is electrically coupled with the power supply module. The soft start unit is electrically coupled with the system load and the power supply module. The unidirectional conducting unit is electrically coupled between the soft start unit and the power supply module, so as to prevent the energy from the power supply module from entering the soft start unit. The connector has a power input terminal. The power input terminal is electrically coupled with the soft start unit.
    Type: Application
    Filed: May 11, 2016
    Publication date: August 3, 2017
    Inventors: HSIN-CHIH Kuo, MING-CHIEH Lee