Patents by Inventor Hsin-Feng Li

Hsin-Feng Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240081077
    Abstract: A transistor includes a first semiconductor layer, a second semiconductor layer, a semiconductor nanosheet, a gate electrode and source and drain electrodes. The semiconductor nanosheet is physically connected to the first semiconductor layer and the second semiconductor layer. The gate electrode wraps around the semiconductor nanosheet. The source and drain electrodes are disposed at opposite sides of the gate electrode. The first semiconductor layer surrounds the source electrode, the second semiconductor layer surrounds the drain electrode, and the semiconductor nanosheet is disposed between the source and drain electrodes.
    Type: Application
    Filed: September 1, 2022
    Publication date: March 7, 2024
    Applicants: Taiwan Semiconductor Manufacturing Company, Ltd., National Yang Ming Chiao Tung University
    Inventors: Po-Tsun Liu, Meng-Han Lin, Zhen-Hao Li, Tsung-Che Chiang, Bo-Feng Young, Hsin-Yi Huang, Sai-Hooi Yeong, Yu-Ming Lin
  • Patent number: 8835753
    Abstract: A solar cell includes a semiconductor base, a first doped semiconductor layer, an insulating layer, a second doped semiconductor layer and a first electrode layer. The semiconductor base has a first doped type. The first doped semiconductor layer, disposed on the semiconductor base, has a doped contact region. The insulating layer is disposed on the first doped semiconductor layer, exposing the doped contact region. The second doped semiconductor layer is disposed on the insulating layer and the doped contact region. The first doped semiconductor layer, the doped contact region and the second doped semiconductor layer have a second doped type, and a dopant concentration of the second doped semiconductor layer is between that of the first doped semiconductor layer and that of the doped contact region. The first electrode layer is disposed corresponding to the doped contact region.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: September 16, 2014
    Assignee: AU Optronics Corp.
    Inventors: Yen-Cheng Hu, Hsin-Feng Li, Zhen-Cheng Wu
  • Patent number: 8338217
    Abstract: A method of fabricating a solar cell is provided. A first type semiconductor substrate having a first surface and a second surface is provided. A second type doped diffusion region is formed in parts of the first type semiconductor substrate. The second type doped diffusion region extends within the first type semiconductor substrate from the first surface. An anti-reflection coating (ARC) in contact with second type doped diffusion region is formed over the first surface. A conductive paste including conductive particles and dopant is formed over the ARC. A co-firing process for enabling the conductive paste to penetrate the ARC to form a first contact conductor embedded in the ARC is performed. During the co-firing process, the dopant diffuses into the second type doped diffusion region and a second type heavily doped diffusion region is formed. A second contact conductor is formed on the second surface.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: December 25, 2012
    Assignee: Au Optronics Corporation
    Inventors: Yen-Cheng Hu, Cheng-Chang Kuo, Jun-Wei Chen, Hsin-Feng Li, Jen-Chieh Chen, Zhen-Cheng Wu
  • Publication number: 20120171805
    Abstract: A method of fabricating a solar cell is provided. A first type semiconductor substrate having a first surface and a second surface is provided. A second type doped diffusion region is formed in parts of the first type semiconductor substrate. The second type doped diffusion region extends within the first type semiconductor substrate from the first surface. An anti-reflection coating (ARC) in contact with second type doped diffusion region is formed over the first surface. A conductive paste including conductive particles and dopant is formed over the ARC. A co-firing process for enabling the conductive paste to penetrate the ARC to form a first contact conductor embedded in the ARC is performed. During the co-firing process, the dopant diffuses into the second type doped diffusion region and a second type heavily doped diffusion region is formed. A second contact conductor is formed on the second surface.
    Type: Application
    Filed: March 16, 2011
    Publication date: July 5, 2012
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Yen-Cheng Hu, Cheng-Chang Kuo, Jun-Wei Chen, Hsin-Feng Li, Jen-Chieh Chen, Zhen-Cheng Wu
  • Publication number: 20120167966
    Abstract: A solar cell includes a semiconductor base, a first doped semiconductor layer, an insulating layer, a second doped semiconductor layer and a first electrode layer. The semiconductor base has a first doped type. The first doped semiconductor layer, disposed on the semiconductor base, has a doped contact region. The insulating layer is disposed on the first doped semiconductor layer, exposing the doped contact region. The second doped semiconductor layer is disposed on the insulating layer and the doped contact region. The first doped semiconductor layer, the doped contact region and the second doped semiconductor layer have a second doped type, and a dopant concentration of the second doped semiconductor layer is between that of the first doped semiconductor layer and that of the doped contact region. The first electrode layer is disposed corresponding to the doped contact region.
    Type: Application
    Filed: May 5, 2011
    Publication date: July 5, 2012
    Inventors: Yen-Cheng Hu, Hsin-Feng Li, Zhen-Cheng Wu
  • Publication number: 20120138127
    Abstract: A solar cell and a manufacturing method thereof are provided. A laser doping process is adopted to form positive and negative doping regions for an accurate control of the doping regions. No metal contact coverage issue arises since a contact opening is formed by later firing process. The solar cell is provided with a comb-like first electrode, a sheet-like second electrode corresponding to the doping regions to obtain high photoelectric conversion efficiency by fully utilizing the space in the semiconductor substrate. Furthermore, the sheet-like second electrode can be formed by a material having high reflectivity to improve the light utilization rate of the solar cell. The manufacturing process of the solar cell is simplified and the processing yield is improved.
    Type: Application
    Filed: March 2, 2011
    Publication date: June 7, 2012
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Cheng-Chang Kuo, Yen-Cheng Hu, Hsin-Feng Li, Tsung-Pao Chen, Jen-Chieh Chen, Zhen-Cheng Wu