Patents by Inventor Hsin-Hua Cho

Hsin-Hua Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9790470
    Abstract: This invention relates to the in vitro differentiation of pluripotent cells into pancreatic progenitors by i) culturing pluripotent cells in a definitive endoderm (DE) medium comprising a TGFp ligand, fibroblast growth factor (FGF), bone morphogenetic protein (BMP), a PI3K inhibitor and optionally a GSK3 ? inhibitor to produce a population of definitive endoderm cells, ii) culturing the definitive endoderm cells in a first pancreatic medium comprising an activin antagonist; FGF; retinoic acid; and a BMP inhibitor to produce a population of dorsal foregut cells; iii) culturing the dorsal foregut cells in a second pancreatic medium comprising FGF, retinoic acid, a BMP inhibitor, and a hedgehog signalling inhibitor, and; iv) culturing the endoderm cells in a third pancreatic medium comprising FGF. The progenitor cells thus produced may be further differentiated into pancreatic endocrine cells. These methods may be useful, for example, in producing pancreatic cells for therapy or disease modelling.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: October 17, 2017
    Assignee: Cambridge Enterprise Limited
    Inventors: Ludovic Vallier, Hsin-hua Cho
  • Patent number: 9284576
    Abstract: This invention relates to the induction of hepatic differentiation by culturing induced pluripotent stem (iPS) cells in an endoderm induction medium to produce a population of anterior definitive endoderm (ADE) cells and then culturing the population of ADE cells in a hepatic induction medium to produce a population of hepatic progenitor cells, which may be optionally differentiated into hepatocytes. The endoderm induction medium is a chemically defined medium which has fibroblast growth factor activity, stimulates SMAD2 and SMAD3 mediated signalling pathways and SMAD1, SMAD5 and SMAD9 mediated signalling pathways, and inhibits phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3? (GSK3?); and the hepatic induction medium is a chemically defined medium which stimulates SMAD2 and SMAD3 mediated signalling pathways. These methods may be useful, for example, in producing hepatocytes and hepatic progenitor cells for cell-based therapies or disease modelling.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: March 15, 2016
    Assignee: Cambride Enterprise Limited
    Inventors: Ludovic Vallier, Sheikh Tamir Rashid, Nicholas Hannan, Hsin-Hua Cho
  • Publication number: 20150225698
    Abstract: This invention relates to the in vitro differentiation of pluripotent cells into pancreatic progenitors by i) culturing pluripotent cells in a definitive endoderm (DE) medium comprising a TGFp ligand, fibroblast growth factor (FGF), bone morphogenetic protein (BMP), a PI3K inhibitor and optionally a GSK3 ? inhibitor to produce a population of definitive endoderm cells, ii) culturing the definitive endoderm cells in a first pancreatic medium comprising an activin antagonist; FGF; retinoic acid; and a BMP inhibitor to produce a population of dorsal foregut cells; iii) culturing the dorsal foregut cells in a second pancreatic medium comprising FGF, retinoic acid, a BMP inhibitor, and a hedgehog signalling inhibitor, and; iv) culturing the endoderm cells in a third pancreatic medium comprising FGF. The progenitor cells thus produced may be further differentiated into pancreatic endocrine cells. These methods may be useful, for example, in producing pancreatic cells for therapy or disease modelling.
    Type: Application
    Filed: September 16, 2013
    Publication date: August 13, 2015
    Applicant: Cambridge Enterprise Limited
    Inventors: Ludovic Vallier, Hsin-hua Cho
  • Publication number: 20130156743
    Abstract: This invention relates to the induction of hepatic differentiation by culturing induced pluripotent stem (iPS) cells in an endoderm induction medium to produce a population of anterior definitive endoderm (ADE) cells and then culturing the population of ADE cells in a hepatic induction medium to produce a population of hepatic progenitor cells, which may be optionally differentiated into hepatocytes. The endoderm induction medium is a chemically defined medium which has fibroblast growth factor activity, stimulates SMAD2 and SMAD3 mediated signalling pathways and SMAD1, SMAD5 and SMAD9 mediated signalling pathways, and inhibits phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3? (GSK3?); and the hepatic induction medium is a chemically defined medium which stimulates SMAD2 and SMAD3 mediated signalling pathways. These methods may be useful, for example, in producing hepatocytes and hepatic progenitor cells for cell-based therapies or disease modelling.
    Type: Application
    Filed: August 25, 2011
    Publication date: June 20, 2013
    Applicant: Cambridge Enterprise Limited
    Inventors: Ludovic Vallier, Sheikh Tamir Rashid, Nicholas Hannan, Hsin-Hua Cho