Patents by Inventor Hsin-Li Cheng

Hsin-Li Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220285422
    Abstract: An image sensor device is disclosed which includes a semiconductor layer having a first surface and a second surface, where the second surface is opposite to the first surface. The device includes a conductive structure disposed over the first surface, with a dielectric layer disposed between the conductive structure and the first surface. The device includes a first dielectric layer disposed over the second surface of the semiconductor substrate. The device includes a second dielectric layer disposed over the first dielectric layer. The device includes a color filter layer disposed over the second dielectric layer. In some embodiments, the thickness, refractive index, or both of the first dielectric layer and the thickness, refractive index, or both of the second dielectric layer may be collectively determined to cause incident radiation passing through the first dielectric layer and the second dielectric layer and to the plurality of pixels to have destructive interference.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 8, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Feng-Chien Hsieh, Chia-Yen Hsu, Yun-Wei Cheng, Wei-Li Hu, Kuo-Cheng Lee, Hsin-Chi Chen
  • Publication number: 20220271075
    Abstract: A subpixel including at least one second-conductivity-type pinned photodiode layer that forms a p-n junction with a substrate semiconductor layer, at least one floating diffusion region, and at least one transfer gate stack structure. The at least one transfer gate stack structure may at least partially laterally surround the at least one second-conductivity-type pinned photodiode layer with a total azimuthal extension angle in a range from 240 degrees to 360 degrees around a geometrical center of the second-conductivity-type pinned photodiode layer. The at least one transfer gate stack structure may include multiple edges that overlie different segments of a periphery of the at least one second-conductivity-type pinned photodiode layer, and the floating diffusion region includes a portion located between the first edge and the second edge. In addition, multiple transfer gate stack structures and multiple floating diffusion regions may be present in the subpixel.
    Type: Application
    Filed: February 23, 2021
    Publication date: August 25, 2022
    Inventors: Feng-Chien Hsieh, Yun-Wei Cheng, Wei-Li Hu, Kuo-Cheng Lee, Hsin-Chi Chen
  • Publication number: 20220263608
    Abstract: A method for handling Hybrid Automatic Repeat reQuest (HARQ) feedback transmissions includes a User Equipment (UE) receiving, from a Base Station (BS), Downlink Control Information (DCI) on a Physical Downlink Control Channel (PDCCH). The DCI schedules a reception of Downlink (DL) data on a Physical Downlink Shared Channel (PDSCH). The method further includes the UE determining whether to transmit a HARQ feedback for the DL data according to the DCI.
    Type: Application
    Filed: July 27, 2020
    Publication date: August 18, 2022
    Inventors: CHIA-HUNG WEI, HSIN-HSI TSAI, CHIEN-CHUN CHENG, HENG-LI CHIN
  • Publication number: 20210343881
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a substrate comprising sidewalls that define a trench. A capacitor comprising a plurality of conductive layers and a plurality of dielectric layers that define a trench segment is disposed within the trench. A width of the trench segment continuously increases from a front-side surface of the substrate in a direction towards a bottom surface of the trench.
    Type: Application
    Filed: July 8, 2021
    Publication date: November 4, 2021
    Inventors: Hsin-Li Cheng, Jyun-Ying Lin, Alexander Kalnitsky, Shih-Fen Huang, Shu-Hui Su, Ting-Chen Hsu, Tuo-Hsin Chien, Felix Ying-Kit Tsui, Shi-Min Wu, Yu-Chi Chang
  • Publication number: 20210255656
    Abstract: Voltage reference circuits are provided. A voltage reference circuit includes a transistor, a flipped-gate transistor, a first current mirror unit, a second current mirror unit and an output node. The gate and the drain of the flipped-gate transistor are coupled to the gate and the drain of the transistor. The first current mirror unit is configured to provide a first current to the flipped-gate transistor and the mirroring current in response to a bias current. The second current mirror unit is configured to drain a second current from the transistor in response to the mirroring current. The output node is coupled to the source of the transistor and the second current mirror unit, and is configured to output a reference voltage.
    Type: Application
    Filed: January 7, 2021
    Publication date: August 19, 2021
    Inventors: Yen-Ting WANG, Alan ROTH, Eric SOENEN, Alexander KALNITSKY, Liang-Tai KUO, Hsin-Li CHENG
  • Patent number: 11063157
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a pillar structure abutting a trench capacitor. A substrate has sidewalls that define a trench. The trench extends into a front-side surface of the substrate. The trench capacitor includes a plurality of capacitor electrode layers and a plurality of capacitor dielectric layers that respectively line the trench and define a cavity within the substrate. The pillar structure is disposed within the substrate. The pillar structure has a first width and a second width less than the first width. The first width is aligned with the front-side surface of the substrate and the second width is aligned with a first point disposed beneath the front-side surface.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Li Cheng, Jyun-Ying Lin, Alexander Kalnitsky, Shih-Fen Huang, Shu-Hui Su, Ting-Chen Hsu, Tuo-Hsin Chien, Felix Ying-Kit Tsui, Shi-Min Wu, Yu-Chi Chang
  • Publication number: 20210202761
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a pillar structure abutting a trench capacitor. A substrate has sidewalls that define a trench. The trench extends into a front-side surface of the substrate. The trench capacitor includes a plurality of capacitor electrode layers and a plurality of capacitor dielectric layers that respectively line the trench and define a cavity within the substrate. The pillar structure is disposed within the substrate. The pillar structure has a first width and a second width less than the first width. The first width is aligned with the front-side surface of the substrate and the second width is aligned with a first point disposed beneath the front-side surface.
    Type: Application
    Filed: December 27, 2019
    Publication date: July 1, 2021
    Inventors: Hsin-Li Cheng, Jyun-Ying Lin, Alexander Kalnitsky, Shih-Fen Huang, Shu-Hui Su, Ting-Chen Hsu, Tuo-Hsin Chien, Felix Ying-Kit Tsui, Shi-Min Wu, Yu-Chi Chang
  • Publication number: 20210202711
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes a source region and a drain region arranged in a semiconductor substrate, where the source region is laterally separated from the drain region. A gate stack is arranged over the semiconductor substrate and between the source region and the drain region. A cap layer is arranged over the gate stack, where a bottom surface of the cap layer contacts a top surface of the gate stack. Sidewall spacers are arranged along sides of the gate stack and the cap layer. A resist protective oxide (RPO) layer is disposed over the cap layer, where the RPO layer extends along sides of the sidewalls spacers to the semiconductor substrate. A contact etch stop layer is arranged over the RPO layer, the source region, and the drain region.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 1, 2021
    Inventors: Hsin-Li Cheng, Liang-Tai Kuo, Yu-Chi Chang
  • Publication number: 20210104598
    Abstract: A capacitor structure and method of forming the capacitor structure is provided, including a providing a doped region of a substrate having a two-dimensional trench array with a plurality of segments defined therein. Each of the plurality of segments has an array of a plurality of recesses extending along the substrate, where the plurality of segments are rotationally symmetric about a center of the two-dimensional trench array. A first conducting layer is presented over the surface and a bottom and sidewalls of the recesses and is insulated from the substrate by a first dielectric layer. A second conducting layer is presented over the first conducting layer and is insulated by a second dielectric layer. First and second contacts respectively connect to an exposed top surface of the first conducting layer and second conducting layer. A third contact connects to the substrate within a local region to the capacitor structure.
    Type: Application
    Filed: November 25, 2020
    Publication date: April 8, 2021
    Inventors: Jyun-Ying Lin, Hsin-Li Cheng, Jing-Hwang Yang, Felix Ying-Kit Tsui, Chien-Li Kuo
  • Patent number: 10971596
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes a source region and a drain region arranged in a semiconductor substrate, where the source region is laterally separated from the drain region. A gate stack is arranged over the semiconductor substrate and between the source region and the drain region. A cap layer is arranged over the gate stack, where a bottom surface of the cap layer contacts a top surface of the gate stack. Sidewall spacers are arranged along sides of the gate stack and the cap layer. A resist protective oxide (RPO) layer is disposed over the cap layer, where the RPO layer extends along sides of the sidewalls spacers to the semiconductor substrate. A contact etch stop layer is arranged over the RPO layer, the source region, and the drain region.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: April 6, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Li Cheng, Liang-Tai Kuo, Yu-Chi Chang
  • Patent number: 10971404
    Abstract: A semiconductor device includes a semiconductor substrate, and a first transistor. The first transistor has a first gate on the semiconductor substrate, and a first lightly doped source/drain region within the semiconductor substrate to determine a first channel region beneath the first gate. A doping ratio determined as a concentration of the first lightly doped source/drain region divided by a concentration of the first channel region ranges from 1.0×1013 to 1.0×1017.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: April 6, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Chi Chang, Hsin-Li Cheng, Felix Ying-Kit Tsui
  • Patent number: 10868110
    Abstract: A capacitor structure and method of forming the capacitor structure is provided, including a providing a doped region of a substrate having a two-dimensional trench array with a plurality of segments defined therein. Each of the plurality of segments has an array of a plurality of recesses extending along the substrate, where the plurality of segments are rotationally symmetric about a center of the two-dimensional trench array. A first conducting layer is presented over the surface and a bottom and sidewalls of the recesses and is insulated from the substrate by a first dielectric layer. A second conducting layer is presented over the first conducting layer and is insulated by a second dielectric layer. First and second contacts respectively connect to an exposed top surface of the first conducting layer and second conducting layer. A third contact connects to the substrate within a local region to the capacitor structure.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jyun-Ying Lin, Hsin-Li Cheng, Jing-Hwang Yang, Felix Ying-Kit Tsui, Chien-Li Kuo
  • Patent number: 10693019
    Abstract: Various embodiments of the present application are directed towards a trench capacitor with a high capacitance density. In some embodiments, the trench capacitor overlies the substrate and fills a trench defined by the substrate. The trench capacitor comprises a lower capacitor electrode, a capacitor dielectric layer, and an upper capacitor electrode. The capacitor dielectric layer overlies the lower capacitor electrode and lines the trench. The upper capacitor electrode overlies the capacitor dielectric layer and lines the trench over the capacitor dielectric layer. The capacitor dielectric layer comprises a high ? dielectric material. By using a high ? material for the dielectric layer, the trench capacitor may have a high capacitance density suitable for use with high performance mobile devices.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: June 23, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Li Cheng, Jyun-Ying Lin, Jing-Hwang Yang, Ting-Chen Hsu, Felix Ying-Kit Tsui, Yen-Wen Chen
  • Publication number: 20200144389
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes a source region and a drain region arranged in a semiconductor substrate, where the source region is laterally separated from the drain region. A gate stack is arranged over the semiconductor substrate and between the source region and the drain region. A cap layer is arranged over the gate stack, where a bottom surface of the cap layer contacts a top surface of the gate stack. Sidewall spacers are arranged along sides of the gate stack and the cap layer. A resist protective oxide (RPO) layer is disposed over the cap layer, where the RPO layer extends along sides of the sidewalls spacers to the semiconductor substrate. A contact etch stop layer is arranged over the RPO layer, the source region, and the drain region.
    Type: Application
    Filed: January 2, 2020
    Publication date: May 7, 2020
    Inventors: Hsin-Li Cheng, Liang-Tai Kuo, Yu-Chi Chang
  • Publication number: 20200066922
    Abstract: Various embodiments of the present application are directed towards a trench capacitor with a high capacitance density. In some embodiments, the trench capacitor overlies the substrate and fills a trench defined by the substrate. The trench capacitor comprises a lower capacitor electrode, a capacitor dielectric layer, and an upper capacitor electrode. The capacitor dielectric layer overlies the lower capacitor electrode and lines the trench. The upper capacitor electrode overlies the capacitor dielectric layer and lines the trench over the capacitor dielectric layer. The capacitor dielectric layer comprises a high ? dielectric material. By using a high ? material for the dielectric layer, the trench capacitor may have a high capacitance density suitable for use with high performance mobile devices.
    Type: Application
    Filed: August 27, 2018
    Publication date: February 27, 2020
    Inventors: Hsin-Li Cheng, Jyun-Ying Lin, Jing-Hwang Yang, Ting-Chen Hsu, Felix Ying-Kit Tsui, Yen-Wen Chen
  • Publication number: 20200035806
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes a source region and a drain region arranged in a semiconductor substrate, where the source region is laterally separated from the drain region. A gate stack is arranged over the semiconductor substrate and between the source region and the drain region. A cap layer is arranged over the gate stack, where a bottom surface of the cap layer contacts a top surface of the gate stack. Sidewall spacers are arranged along sides of the gate stack and the cap layer. A resist protective oxide (RPO) layer is disposed over the cap layer, where the RPO layer extends along sides of the sidewalls spacers to the semiconductor substrate. A contact etch stop layer is arranged over the RPO layer, the source region, and the drain region.
    Type: Application
    Filed: August 30, 2018
    Publication date: January 30, 2020
    Inventors: Hsin-Li Cheng, Liang-Tai Kuo, Yu-Chi Chang
  • Publication number: 20200035802
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a substrate; an active area including a channel region sandwiched between two source/drain regions; an insulation region surrounding the active area from a top view; and a dielectric layer disposed over and in contact with an interface between the insulation region and the source/drain regions. A method of manufacturing the same is also disclosed.
    Type: Application
    Filed: March 29, 2019
    Publication date: January 30, 2020
    Inventors: HSIN-LI CHENG, YU-CHI CHANG
  • Patent number: 10529818
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes a source region and a drain region arranged in a semiconductor substrate, where the source region is laterally separated from the drain region. A gate stack is arranged over the semiconductor substrate and between the source region and the drain region. A cap layer is arranged over the gate stack, where a bottom surface of the cap layer contacts a top surface of the gate stack. Sidewall spacers are arranged along sides of the gate stack and the cap layer. A resist protective oxide (RPO) layer is disposed over the cap layer, where the RPO layer extends along sides of the sidewalls spacers to the semiconductor substrate. A contact etch stop layer is arranged over the RPO layer, the source region, and the drain region.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: January 7, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsin-Li Cheng, Liang-Tai Kuo, Yu-Chi Chang
  • Publication number: 20190245031
    Abstract: A capacitor structure and method of forming the capacitor structure is provided, including a providing a doped region of a substrate having a two-dimensional trench array with a plurality of segments defined therein. Each of the plurality of segments has an array of a plurality of recesses extending along the substrate, where the plurality of segments are rotationally symmetric about a center of the two-dimensional trench array. A first conducting layer is presented over the surface and a bottom and sidewalls of the recesses and is insulated from the substrate by a first dielectric layer. A second conducting layer is presented over the first conducting layer and is insulated by a second dielectric layer. First and second contacts respectively connect to an exposed top surface of the first conducting layer and second conducting layer. A third contact connects to the substrate within a local region to the capacitor structure.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 8, 2019
    Inventors: Jyun-Ying Lin, Hsin-Li Cheng, Jing-Hwang Yang, Felix Ying-Kit Tsui, Chien-Li Kuo
  • Patent number: 10276651
    Abstract: A capacitor structure and method of forming the capacitor structure is provided, including a providing a doped region of a substrate having a two-dimensional trench array with a plurality of segments defined therein. Each of the plurality of segments has an array of a plurality of recesses extending along the substrate, where the plurality of segments are rotationally symmetric about a center of the two-dimensional trench array. A first conducting layer is presented over the surface and a bottom and sidewalls of the recesses and is insulated from the substrate by a first dielectric layer. A second conducting layer is presented over the first conducting layer and is insulated by a second dielectric layer. First and second contacts respectively connect to an exposed top surface of the first conducting layer and second conducting layer. A third contact connects to the substrate within a local region to the capacitor structure.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jyun-Ying Lin, Hsin-Li Cheng, Jing-Hwang Yang, Felix Ying-Kit Tsui, Chien-Li Kuo