Patents by Inventor Hsin-Li Cheng

Hsin-Li Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113159
    Abstract: A semiconductor die included in a semiconductor die package may include a plurality of decoupling trench capacitor regions in a device region of the semiconductor die. At least two or more of the decoupling trench capacitor regions include decoupling trench capacitor structures having different depths. The depths of the decoupling trench capacitor structures in the decoupling trench capacitor regions may be selected to provide sufficient capacitance so as to satisfy circuit decoupling parameters for circuits of the semiconductor die package, while reducing the likelihood of warping, breaking, and/or cracking of the semiconductor die package.
    Type: Application
    Filed: January 6, 2023
    Publication date: April 4, 2024
    Inventors: Shu-Hui SU, Hsin-Li CHENG, YingKit Felix TSUI
  • Patent number: 11923352
    Abstract: A semiconductor device is provided. The semiconductor device comprises a first semiconductor die comprising a first capacitor, and a second semiconductor die in contact with the first semiconductor die and comprises a diode. The first semiconductor die and the second semiconductor die are arranged along a first direction, and a diode is configured to direct electrons accumulated at the first capacitor to a ground.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: March 5, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hsin-Li Cheng, Shu-Hui Su, Yu-Chi Chang, Yingkit Felix Tsui, Shih-Fen Huang
  • Publication number: 20240047552
    Abstract: The present disclosure provides an embodiment of a method. The method includes patterning a substrate to form trenches; etching the substrate, thereby modifying the trenches with round tips; forming a stack including conductive layers and dielectric layers in the trenches, wherein the conductive layers and the dielectric layers alternate with one another within the stack; forming an insulating compressive film in the first trenches, thereby sealing voids in the trenches; and forming conductive plugs connected to the conductive layers, respectively.
    Type: Application
    Filed: May 17, 2023
    Publication date: February 8, 2024
    Inventors: Fu-Chiang Kuo, Hsin-Liang Chen, Hsin-Li Cheng, Ting-Chen Hsu
  • Publication number: 20240047513
    Abstract: Various embodiments of the present disclosure provide a semiconductor device structure.
    Type: Application
    Filed: August 8, 2022
    Publication date: February 8, 2024
    Inventors: Shu-Hui SU, Hsin-Li CHENG, Felix YingKit TSUI, Yu-Chi CHANG
  • Publication number: 20240030359
    Abstract: The present disclosure provides a semiconductor device, including a first semiconductor structure and a second semiconductor structure. Each of the first semiconductor structure and the second semiconductor structure includes a substrate; a through silicon via, penetrating the substrate; and a deep trench capacitor, disposed in the substrate, separated from the TSV by a distance. The deep trench capacitor includes a stack, including a dielectric layer between a pair of conductive layers in a trench; and an insulating layer, covering the stack and the trench. The insulating layer surround a plurality of voids in the trench.
    Type: Application
    Filed: July 21, 2022
    Publication date: January 25, 2024
    Inventors: SHU-HUI SU, HSIN-LI CHENG, YINGKIT FELIX TSUI, YU-CHI CHANG, HSUAN-NING SHIH
  • Publication number: 20240014254
    Abstract: Various embodiments of the present application are directed towards an integrated chip (IC). The IC comprises a trench capacitor overlying a substrate. The trench capacitor comprises a plurality of capacitor electrode structures, a plurality of warping reduction structures, and a plurality of capacitor dielectric structures. The plurality of capacitor electrode structures, the plurality of warping reduction structures, and the plurality of capacitor dielectric structures are alternatingly stacked and define a trench segment that extends vertically into the substrate. The plurality of capacitor electrode structures comprise a metal component and a nitrogen component. The plurality of warping reduction structures comprise the metal component, the nitrogen component, and an oxygen component.
    Type: Application
    Filed: July 11, 2022
    Publication date: January 11, 2024
    Inventors: Ting-Chen Hsu, Hsin-Li Cheng, Jyun-Ying Lin, Yingkit Felix Tsui, Shu-Hui Su, Shi-Min Wu
  • Publication number: 20230378251
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip including a capacitor over a substrate. The capacitor includes a plurality of conductive layers and a plurality of dielectric layers. The plurality of conductive layers and dielectric layers define a base structure and a first protrusion structure extending downward from the base structure towards a bottom surface of the substrate. The first protrusion structure comprises one or more surfaces defining a first cavity. A top of the first cavity is disposed below the base structure.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Hsin-Li Cheng, Jyun-Ying Lin, Alexander Kalnitsky, Shih-Fen Huang, Shu-Hui Su, Ting-Chen Hsu, Tuo-Hsin Chien, Felix Ying-Kit Tsui, Shi-Min Wu, Yu-Chi Chang
  • Publication number: 20230361166
    Abstract: A capacitor structure and method of forming the capacitor structure is provided, including a providing a doped region of a substrate having a two-dimensional trench array with a plurality of segments defined therein. Each of the plurality of segments has an array of a plurality of recesses extending along the substrate, where the plurality of segments are rotationally symmetric about a center of the two-dimensional trench array. A first conducting layer is presented over the surface and a bottom and sidewalls of the recesses and is insulated from the substrate by a first dielectric layer. A second conducting layer is presented over the first conducting layer and is insulated by a second dielectric layer. First and second contacts respectively connect to an exposed top surface of the first conducting layer and second conducting layer. A third contact connects to the substrate within a local region to the capacitor structure.
    Type: Application
    Filed: June 26, 2023
    Publication date: November 9, 2023
    Inventors: Jyun-Ying Lin, Hsin-Li Cheng, Jing-Hwang Yang, Felix Ying-Kit Tsui, Chien-Li Kuo
  • Patent number: 11769792
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a substrate comprising sidewalls that define a trench. A capacitor comprising a plurality of conductive layers and a plurality of dielectric layers that define a trench segment is disposed within the trench. A width of the trench segment continuously increases from a front-side surface of the substrate in a direction towards a bottom surface of the trench.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: September 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Li Cheng, Jyun-Ying Lin, Alexander Kalnitsky, Shih-Fen Huang, Shu-Hui Su, Ting-Chen Hsu, Tuo-Hsin Chien, Felix Ying-Kit Tsui, Shi-Min Wu, Yu-Chi Chang
  • Publication number: 20230299171
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes a gate electrode disposed on a substrate. Source/drain regions are disposed on or within the substrate along opposing sides of the gate electrode. A noise reducing component is arranged along an upper surface of the gate electrode and/or along an upper surface of the substrate over the source/drain regions. A cap layer covers the upper surface of the gate electrode and/or the upper surface of the substrate over the source/drain regions. An inter-level dielectric (ILD) is disposed over and along one or more sidewalls of the cap layer.
    Type: Application
    Filed: May 25, 2023
    Publication date: September 21, 2023
    Inventors: Hsin-Li Cheng, Liang-Tai Kuo, Yu-Chi Chang
  • Publication number: 20230299073
    Abstract: A semiconductor structure includes a semiconductor substrate, a serpentine-shaped resistor, and a MOS transistor. The semiconductor substrate includes an isolation structure and an active region. The serpentine-shaped resistor is over the isolation structure. The serpentine-shaped resistor extends in a length direction and has a width that is equal to or greater than about 3.6 ?m in a width direction. The MOS transistor is over the active region of the semiconductor substrate.
    Type: Application
    Filed: March 17, 2022
    Publication date: September 21, 2023
    Inventors: LIANG-TAI KUO, HSIN-LI CHENG, YINGKIT FELIX TSUI
  • Publication number: 20230266785
    Abstract: Voltage reference circuits are provided. A voltage reference circuit includes a first transistor, a flipped-gate transistor, a first current mirror unit, a second current mirror unit, and an output note. The first transistor is formed by a plurality of second transistors. A gate and a drain of the flipped-gate transistor are coupled to a gate and a drain of each second transistor. The first current mirror unit is configured to provide a first current to the flipped-gate transistor and a mirroring current in response to a bias current. The second current mirror unit is configured to drain a second current from the first transistor in response to the mirroring current. The output node is coupled to a source of each second transistor and the second current mirror unit, and configured to output a reference voltage. Size of the flipped-gate transistor is less than that of the first transistor.
    Type: Application
    Filed: April 28, 2023
    Publication date: August 24, 2023
    Inventors: Yen-Ting WANG, Alan ROTH, Eric SOENEN, Alexander KALNITSKY, Liang-Tai KUO, Hsin-Li CHENG
  • Publication number: 20230246014
    Abstract: A semiconductor device is provided. The semiconductor device comprises a first semiconductor die comprising a first capacitor, and a second semiconductor die in contact with the first semiconductor die and comprises a diode. The first semiconductor die and the second semiconductor die are arranged along a first direction, and a diode is configured to direct electrons accumulated at the first capacitor to a ground.
    Type: Application
    Filed: January 28, 2022
    Publication date: August 3, 2023
    Inventors: HSIN-LI CHENG, SHU-HUI SU, YU-CHI CHANG, YINGKIT FELIX TSUI, SHIH-FEN HUANG
  • Patent number: 11688789
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes a source region and a drain region arranged in a semiconductor substrate, where the source region is laterally separated from the drain region. A gate stack is arranged over the semiconductor substrate and between the source region and the drain region. A cap layer is arranged over the gate stack, where a bottom surface of the cap layer contacts a top surface of the gate stack. Sidewall spacers are arranged along sides of the gate stack and the cap layer. A resist protective oxide (RPO) layer is disposed over the cap layer, where the RPO layer extends along sides of the sidewalls spacers to the semiconductor substrate. A contact etch stop layer is arranged over the RPO layer, the source region, and the drain region.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: June 27, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Li Cheng, Liang-Tai Kuo, Yu-Chi Chang
  • Patent number: 11688762
    Abstract: A capacitor structure and method of forming the capacitor structure is provided, including a providing a doped region of a substrate having a two-dimensional trench array with a plurality of segments defined therein. Each of the plurality of segments has an array of a plurality of recesses extending along the substrate, where the plurality of segments are rotationally symmetric about a center of the two-dimensional trench array. A first conducting layer is presented over the surface and a bottom and sidewalls of the recesses and is insulated from the substrate by a first dielectric layer. A second conducting layer is presented over the first conducting layer and is insulated by a second dielectric layer. First and second contacts respectively connect to an exposed top surface of the first conducting layer and second conducting layer. A third contact connects to the substrate within a local region to the capacitor structure.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: June 27, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jyun-Ying Lin, Hsin-Li Cheng, Jing-Hwang Yang, Felix Ying-Kit Tsui, Chien-Li Kuo
  • Patent number: 11675383
    Abstract: Voltage reference circuits are provided. A voltage reference circuit includes a transistor, a flipped-gate transistor, a first current mirror unit, a second current mirror unit and an output node. The gate and the drain of the flipped-gate transistor are coupled to the gate and the drain of the transistor. The first current mirror unit is configured to provide a first current to the flipped-gate transistor and the mirroring current in response to a bias current. The second current mirror unit is configured to drain a second current from the transistor in response to the mirroring current. The output node is coupled to the source of the transistor and the second current mirror unit, and is configured to output a reference voltage.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: June 13, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-Ting Wang, Alan Roth, Eric Soenen, Alexander Kalnitsky, Liang-Tai Kuo, Hsin-Li Cheng
  • Publication number: 20220359702
    Abstract: A method of manufacturing a semiconductor structure is disclosed. The method includes the following operations. An insulation region is formed in a substrate to define an active region in the substrate. A gate structure is formed across the active region. A source or drain region is formed in the active region and adjoins the insulation region. A resist protective dielectric film is formed, wherein the resist protective dielectric film overlaps an interface between the source or drain region and the insulation region, and exposes a portion of the source or drain region and a portion of the gate structure.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: HSIN-LI CHENG, YU-CHI CHANG
  • Patent number: 11489058
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a substrate; an active area including a channel region sandwiched between two source/drain regions; an insulation region surrounding the active area from a top view; and a dielectric layer disposed over and in contact with an interface between the insulation region and the source/drain regions. A method of manufacturing the same is also disclosed.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: November 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hsin-Li Cheng, Yu-Chi Chang
  • Publication number: 20210343881
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) including a substrate comprising sidewalls that define a trench. A capacitor comprising a plurality of conductive layers and a plurality of dielectric layers that define a trench segment is disposed within the trench. A width of the trench segment continuously increases from a front-side surface of the substrate in a direction towards a bottom surface of the trench.
    Type: Application
    Filed: July 8, 2021
    Publication date: November 4, 2021
    Inventors: Hsin-Li Cheng, Jyun-Ying Lin, Alexander Kalnitsky, Shih-Fen Huang, Shu-Hui Su, Ting-Chen Hsu, Tuo-Hsin Chien, Felix Ying-Kit Tsui, Shi-Min Wu, Yu-Chi Chang
  • Publication number: 20210255656
    Abstract: Voltage reference circuits are provided. A voltage reference circuit includes a transistor, a flipped-gate transistor, a first current mirror unit, a second current mirror unit and an output node. The gate and the drain of the flipped-gate transistor are coupled to the gate and the drain of the transistor. The first current mirror unit is configured to provide a first current to the flipped-gate transistor and the mirroring current in response to a bias current. The second current mirror unit is configured to drain a second current from the transistor in response to the mirroring current. The output node is coupled to the source of the transistor and the second current mirror unit, and is configured to output a reference voltage.
    Type: Application
    Filed: January 7, 2021
    Publication date: August 19, 2021
    Inventors: Yen-Ting WANG, Alan ROTH, Eric SOENEN, Alexander KALNITSKY, Liang-Tai KUO, Hsin-Li CHENG