Patents by Inventor Hsing-An Tsai

Hsing-An Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240404876
    Abstract: Semiconductor devices and methods of manufacturing are provided. In some embodiments the method includes depositing an etch stop layer over a first hard mask material, the first hard mask material over a gate stack, depositing an interlayer dielectric over the etch stop layer, forming a first opening through the interlayer dielectric, the etch stop layer, and the first hard mask material, the first opening exposing a conductive portion of the gate stack, and treating sidewalls of the first opening with a first dopant to form a first treated region within the interlayer dielectric, a second treated region within the etch stop layer, a third treated region within the first hard mask material, and a fourth treated region within the conductive portion, wherein after the treating the fourth treated region has a higher concentration of the first dopant than the first treated region.
    Type: Application
    Filed: July 30, 2024
    Publication date: December 5, 2024
    Inventors: Kan-Ju Lin, Chien Chang, Chih-Shiun Chou, Tai Min Chang, Yi-Ning Tai, Hung-Yi Huang, Chih-Wei Chang, Ming-Hsing Tsai, Lin-Yu Huang
  • Patent number: 12159837
    Abstract: A semiconductor structure with an improved metal structure is described. The semiconductor structure can include a substrate having an upper surface, an interconnect layer over the upper surface, and an additional structure deposited over the interconnect layer. The interconnect layer can include a patterned seed layer over the substrate, at least two metal lines over the seed layer, and a dielectric material between adjacent metal lines. A barrier layer can be deposited over the at least two metal lines. Methods of making the semiconductor structures are also described.
    Type: Grant
    Filed: January 9, 2023
    Date of Patent: December 3, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-Jiun Liu, Chen-Yuan Kao, Hung-Wen Su, Ming-Hsing Tsai, Syun-Ming Jang
  • Patent number: 12154608
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a bottom electrode layer over a substrate. A magnetic tunnel junction (MTJ) layers are formed over the bottom electrode layer. A top electrode layer is formed over the MTJ layers. The top electrode layer is patterned. After patterning the top electrode layer, one or more process cycles are performed on the MTJ layers and the bottom electrode layer. A patterned top electrode layer, patterned MTJ layers and a patterned bottom electrode layer form MTJ structures. Each of the one or more process cycles includes performing an etching process on the MTJ layers and the bottom electrode layer for a first duration and performing a magnetic treatment on the MTJ layers and the bottom electrode layer for a second duration.
    Type: Grant
    Filed: August 8, 2023
    Date of Patent: November 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Bo-Jhih Shen, Kuang-I Liu, Joung-Wei Liou, Jinn-Kwei Liang, Yi-Wei Chiu, Chin-Hsing Lin, Li-Te Hsu, Han-Ting Tsai, Cheng-Yi Wu, Shih-Ho Lin
  • Publication number: 20240387265
    Abstract: A method includes forming a dielectric layer over an epitaxial source/drain region. An opening is formed in the dielectric layer. The opening exposes a portion of the epitaxial source/drain region. A barrier layer is formed on a sidewall and a bottom of the opening. An oxidation process is performing on the sidewall and the bottom of the opening. The oxidation process transforms a portion of the barrier layer into an oxidized barrier layer and transforms a portion of the dielectric layer adjacent to the oxidized barrier layer into a liner layer. The oxidized barrier layer is removed. The opening is filled with a conductive material in a bottom-up manner. The conductive material is in physical contact with the liner layer.
    Type: Application
    Filed: July 28, 2024
    Publication date: November 21, 2024
    Inventors: Pin-Wen Chen, Chang-Ting Chung, Yi-Hsiang Chao, Yu-Ting Wen, Kai-Chieh Yang, Yu-Chen Ko, Peng-Hao Hsu, Ya-Yi Cheng, Min-Hsiu Hung, Chun-Hsien Huang, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
  • Patent number: 12148659
    Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In an embodiment, a barrier layer is formed along a sidewall. A portion of the barrier layer along the sidewall is etched back by a wet etching process. After etching back the portion of the barrier layer, an underlying dielectric welding layer is exposed. A conductive material is formed along the barrier layer.
    Type: Grant
    Filed: April 28, 2023
    Date of Patent: November 19, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ken-Yu Chang, Chun-I Tsai, Ming-Hsing Tsai, Wei-Jung Lin
  • Publication number: 20240379423
    Abstract: A barrier layer is formed in a portion of a thickness of sidewalls in a recess prior to formation of an interconnect structure in the recess. The barrier layer is formed in the portion of the thickness of the sidewalls by a plasma-based deposition operation, in which a precursor reacts with a silicon-rich surface to form the barrier layer. The barrier layer is formed in the portion of the thickness of the sidewalls in that the precursor consumes a portion of the silicon-rich surface of the sidewalls as a result of the plasma treatment. This enables the barrier layer to be formed in a manner in which the cross-sectional width reduction in the recess from the barrier layer is minimized while enabling the barrier layer to be used to promote adhesion in the recess.
    Type: Application
    Filed: July 25, 2024
    Publication date: November 14, 2024
    Inventors: Chien CHANG, Min-Hsiu HUNG, Yu-Hsiang LIAO, Yu-Shiuan WANG, Tai Min CHANG, Kan-Ju LIN, Chih-Shiun CHOU, Hung-Yi HUANG, Chih-Wei CHANG, Ming-Hsing TSAI
  • Publication number: 20240379433
    Abstract: The present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In some embodiments, a structure includes a first dielectric layer over a substrate, a first conductive feature through the first dielectric layer, the first conductive feature comprising a first metal, a second dielectric layer over the first dielectric layer, and a second conductive feature through the second dielectric layer having a lower convex surface extending into the first conductive feature, wherein the lower convex surface of the second conductive feature has a tip end extending laterally under a bottom boundary of the second dielectric layer.
    Type: Application
    Filed: July 24, 2024
    Publication date: November 14, 2024
    Inventors: Pin-Wen Chen, Chia-Han Lai, Chih-Wei Chang, Mei-Hui Fu, Ming-Hsing Tsai, Wei-Jung Lin, Yu-Shih Wang, Ya-Yi Cheng, I-Li Chen
  • Publication number: 20240373759
    Abstract: One or more semiconductor processing tools may deposit one or more tantalum nitride layers on an upper surface of a copper interconnect and within a via. The one or more semiconductor processing tools may deposit an adhesion layer on an upper surface of the one or more tantalum nitride layers and within the via.
    Type: Application
    Filed: July 15, 2024
    Publication date: November 7, 2024
    Inventors: Ya-Ling LEE, Wei-Gang CHIU, Ming-Hsing TSAI
  • Publication number: 20240363353
    Abstract: A method of forming a semiconductor device includes: forming a gate structure over a fin that protrudes above a substrate; forming a source/drain region over the fin adjacent to the gate structure; forming an interlayer dielectric (ILD) layer over the source/drain region around the gate structure; forming an opening in the ILD layer to expose the source/drain region; forming a silicide region and a barrier layer successively in the openings over the source/drain region, where the barrier layer includes silicon nitride; reducing a concentration of silicon nitride in a surface portion of the barrier layer exposed to the opening; after the reducing, forming a seed layer on the barrier layer; and forming an electrically conductive material on the seed layer to fill the opening.
    Type: Application
    Filed: August 14, 2023
    Publication date: October 31, 2024
    Inventors: Pin-Wen Chen, Yu-Chen Ko, Chi-Yuan Chen, Ya-Yi Cheng, Chun-I Tsai, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai, Syun-Ming Jang, Wei-Jen Lo
  • Publication number: 20240355740
    Abstract: A method includes forming a dielectric layer over a conductive feature, and etching the dielectric layer to form an opening. The conductive feature is exposed through the opening. The method further includes forming a tungsten liner in the opening, wherein the tungsten liner contacts sidewalls of the dielectric layer, depositing a tungsten layer to fill the opening, and planarizing the tungsten layer. Portions of the tungsten layer and the tungsten liner in the opening form a contact plug.
    Type: Application
    Filed: June 30, 2023
    Publication date: October 24, 2024
    Inventors: Feng-Yu Chang, Sheng-Hsuan Lin, Shu-Lan Chang, Kai-Yi Chu, Meng-Hsien Lin, Pei-Hsuan Lee, Pei Shan Chang, Chih-Chien Chi, Chun-I Tsai, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai, Syun-Ming Jang, Wei-Jen Lo
  • Patent number: 12119428
    Abstract: A light-emitting assembly with improved illumination includes a first substrate, a light guide layer, light emitters, a touch sensor, a first reflective layer, and a second reflective layer. The first substrate defines a light-transmitting area. The light emitters are in the light guide layer. The light emitters emit light to illuminate the light-transmitting area. The touch sensor is opposite to the light-transmitting area. The first reflective layer is between the first substrate and the light guide layer and defines an opening aligned with the light-transmitting area. The second reflective layer is on a side of the light guide layer away from the first substrate. An electronic device using the light-emitting assembly and a method for making the light-emitting assembly are also disclosed.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: October 15, 2024
    Assignees: Interface Technology (ChengDu) Co., Ltd., INTERFACE OPTOELECTRONICS (SHENZHEN) CO., LTD., GENERAL INTERFACE SOLUTION LIMITED
    Inventors: Han-Lung Tsai, I-Chang Kuan, Ten-Hsing Jaw
  • Publication number: 20240312901
    Abstract: An interconnect structure including a contact via in an interlayer dielectric, a first conductive feature in a first dielectric layer, the first dielectric layer over the interlayer dielectric, a first liner in the first dielectric layer, the first liner comprising a first part in contact with a sidewall surface of the first conductive feature, and a second part in contact with a bottom surface of the first conductive feature. The interconnect structure includes a first cap layer in contact with a top surface of the first conductive feature, a second conductive feature in a second dielectric layer, the second dielectric layer over the first dielectric layer, a second liner in the second dielectric layer, wherein the first and second conductive features comprise a first conductive material, and the contact via, first liner, first cap layer, and second liner comprise a second conductive material chemically different than the first conductive material.
    Type: Application
    Filed: July 12, 2023
    Publication date: September 19, 2024
    Inventors: Chien CHANG, Yen-Chun LIN, Jen-Wei LIU, Chih-Han TSENG, Harry CHIEN, Cheng-Hui WENG, Chun-Chieh LIN, Hung-Wen SU, Ming-Hsing TSAI, Chih-Wei CHANG
  • Publication number: 20240302623
    Abstract: A camera device includes a circuit board and a lens holder. The circuit board has a through hole, a first surface, and a second surface opposite to the first surface. The through hole penetrates the first surface and the second surface, and the first surface is provided with a photosensitive element. The lens holder has an axle hole and an assembling surface, and the lens holder includes a welding column. The assembling surface is fixed to the first surface of the circuit board through a light curing adhesive layer, so that the photosensitive element is in the axle hole, the welding column passes through the through hole, and the welding column is welded and fixed to the circuit board. A manufacturing method of camera device is also provided.
    Type: Application
    Filed: February 28, 2024
    Publication date: September 12, 2024
    Inventors: Li-Hsing Tsai, Jin-Kae Jang
  • Publication number: 20240297074
    Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In an embodiment, a barrier layer is formed along a sidewall. A portion of the barrier layer along the sidewall is etched back. After etching back the portion of the barrier layer, an upper portion of the barrier layer along the sidewall is smoothed. A conductive material is formed along the barrier layer and over the smoothed upper portion of the barrier layer.
    Type: Application
    Filed: May 13, 2024
    Publication date: September 5, 2024
    Inventors: Yu Shih Wang, Chun-I Tsai, Shian Wei Mao, Ken-Yu Chang, Ming-Hsing Tsai, Wei-Jung Lin
  • Patent number: 12075709
    Abstract: One or more semiconductor processing tools may deposit one or more tantalum nitride layers on an upper surface of a copper interconnect and within a via. The one or more semiconductor processing tools may deposit an adhesion layer on an upper surface of the one or more tantalum nitride layers and within the via. The one or more semiconductor processing tools may deposit tungsten on an upper surface of the adhesion layer and within the via for via interconnection of the magnetic tunnel junction to the copper interconnect.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: August 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ya-Ling Lee, Wei-Gang Chiu, Ming-Hsing Tsai
  • Publication number: 20240282626
    Abstract: A method includes forming a first metallic feature, forming a dielectric layer over the first metallic feature, etching the dielectric layer to form an opening, with a top surface of the first metallic feature being exposed through the opening, and performing a first treatment on the top surface of the first metallic feature. The first treatment is performed through the opening, and the first treatment is performed using a first process gas. After the first treatment, a second treatment is performed through the opening, and the second treatment is performed using a second process gas different from the first process gas.
    Type: Application
    Filed: April 29, 2024
    Publication date: August 22, 2024
    Inventors: Chun-Hsien Huang, I-Li Chen, Pin-Wen Chen, Yuan-Chen Hsu, Wei-Jung Lin, Chih-Wei Chang, Ming-Hsing Tsai
  • Publication number: 20240274555
    Abstract: Embodiments provide a method and resulting structure that includes forming an opening in a dielectric layer to expose a metal feature, selectively depositing a metal cap on the metal feature, depositing a barrier layer over the metal cap, and depositing a conductive fill on the barrier layer.
    Type: Application
    Filed: May 8, 2023
    Publication date: August 15, 2024
    Inventors: Wei-Jen Lo, Syun-Ming Jang, Ming-Hsing Tsai, Chun-Chieh Lin, Hung-Wen Su, Ya-Lien Lee, Chih-Han Tseng, Chih-Cheng Kuo, Yi-An Lai, Kevin Huang, Kuan-Hung Ho
  • Publication number: 20240266938
    Abstract: An improved switching power converting apparatus (10) includes a power converting circuit (102), a sampling circuit (104), a signal gain adjustment circuit (106), a frequency limiting circuit (108) and a pulse width modulation controller (110). The sampling circuit (104) is configured to detect the power converting circuit (102) to obtain a sampled signal (Vs) and transmit the sampled signal (Vs) to the signal gain adjustment circuit (106). The signal gain adjustment circuit (106) is configured to adjust the sampled signal (Vs) to obtain a control signal (Vcon) and transmit the control signal (Vcon) to the frequency limiting circuit (108). The pulse width modulation controller (110) is configured to control an operating frequency of the pulse width modulation controller (110) based on the control signal (Vcon).
    Type: Application
    Filed: February 2, 2023
    Publication date: August 8, 2024
    Inventors: Hao-Jen WANG, Cheng-Te TSAI, Hsiao-Hua CHI, Lien-Hsing CHEN, Chun-Ping CHANG, Liang-Jhou DAI
  • Publication number: 20240266417
    Abstract: A first fin structure is disposed over a substrate. The first fin structure contains a semiconductor material. A gate dielectric layer is disposed over upper and side surfaces of the first fin structure. A gate electrode layer is formed over the gate dielectric layer. A second fin structure is disposed over the substrate. The second fin structure is physically separated from the first fin structure and contains a ferroelectric material. The second fin structure is electrically coupled to the gate electrode layer.
    Type: Application
    Filed: April 15, 2024
    Publication date: August 8, 2024
    Inventors: Chi-Hsing Hsu, Sai-Hooi Yeong, Ching-Wei Tsai, Kuan-Lun Cheng, Chih-Hao Wang, Min Cao
  • Patent number: D1045861
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: October 8, 2024
    Assignee: TOP VICTORY INVESTMENTS LIMITED
    Inventors: Bin Liu, Ming-Kuei Ho, Yao-Hsing Tsai