Patents by Inventor Hsing-Kuo Chao

Hsing-Kuo Chao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118491
    Abstract: A photonic semiconductor device including a light-emitting component and a photonic integrated circuit is provided. The light-emitting component at least includes a gain medium layer, a first contact layer and a first optical coupling layer stacked to each other. The photonic integrated circuit includes a second optical coupling layer. The light-emitting component and the photonic integrated circuit are stacked in a stacking direction, the first optical coupling layer has a first taper portion, the second optical coupling layer has a second taper portion, and the first taper portion and the second taper portion overlap in the stacking direction. Accordingly, the light emitted from the gain medium layer may be transmitted to the second taper portion from the first taper portion by optical coupling in a short length of an optical coupling path.
    Type: Application
    Filed: January 19, 2023
    Publication date: April 11, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao YU, Jui Lin CHAO, Hsing-Kuo HSIA, Shih-Peng TAI, Kuo-Chung YEE
  • Publication number: 20240113056
    Abstract: A semiconductor package including a first interposer comprising a first substrate, first optical components over the first substrate, a first dielectric layer over the first optical components, and first conductive connectors embedded in the first dielectric layer, a photonic package bonded to a first side of the first interposer, where a first bond between the first interposer and the photonic package includes a dielectric-to-dielectric bond between a second dielectric layer on the photonic package and the first dielectric layer, and a second bond between the first interposer and the photonic package includes a metal-to-metal bond between a second conductive connector on the photonic package and a first one of the first conductive connectors and a first die bonded to the first side of the first interposer.
    Type: Application
    Filed: March 3, 2023
    Publication date: April 4, 2024
    Inventors: Hsing-Kuo Hsia, Chen-Hua Yu, Chih-Wei Tseng, Jui Lin Chao
  • Publication number: 20240103236
    Abstract: A method includes forming an optical engine, which includes a photonic die. The photonic die further includes a grating coupler. The method further includes forming a fiber unit including a fiber platform having a groove, and an optical fiber attached to the fiber platform. The optical fiber extends into the groove. The fiber platform further includes a reflector. The fiber unit is attached to the optical engine, and the reflector is configured to deflect a light beam, so that the light beam emitted by a first one of the optical fiber and the grating coupler is received by a second one of the optical fiber and the grating coupler.
    Type: Application
    Filed: January 3, 2023
    Publication date: March 28, 2024
    Inventors: Chih-Wei Tseng, Jui Lin Chao, Hsing-Kuo Hsia, Chen-Hua Yu
  • Publication number: 20240107781
    Abstract: Optical devices and methods of manufacture are presented in which an opening is formed within a first semiconductor device and then bonded to other optical devices. A laser die or other fill material may be used to refill the opening. The first semiconductor device is then electrically connected to an optical interposer.
    Type: Application
    Filed: March 28, 2023
    Publication date: March 28, 2024
    Inventors: Hsing-Kuo Hsia, Chen-Hua Yu, Jui Lin Chao
  • Publication number: 20240103218
    Abstract: Optical devices and methods of manufacture are presented in which a laser die or other heterogeneous device is embedded within an optical device and evanescently coupled to other devices. The evanescent coupling can be performed either from the laser die to a waveguide, to an external cavity, to an external coupler, or to an interposer substrate.
    Type: Application
    Filed: January 12, 2023
    Publication date: March 28, 2024
    Inventors: Hsing-Kuo Hsia, Jui Lin Chao, Chen-Hua Yu, Chih-Hao Yu, Shih-Peng Tai
  • Publication number: 20240094469
    Abstract: A method includes patterning a top silicon layer in a substrate to form a plurality of photonic devices. The substrate includes the top silicon layer, a first dielectric layer under the top silicon layer, and a semiconductor layer under the first dielectric layer. The method further includes forming a second dielectric layer to embed the plurality of photonic devices therein, forming an interconnect structure over and signally coupling to the plurality of photonic devices, bonding an electronic die to the interconnect structure, thinning the semiconductor layer, and patterning the semiconductor layer that has been thinned to form openings. The openings are filled with a dielectric material to form dielectric regions. Through-vias are formed to penetrate through the dielectric regions to electrically couple to the interconnect structure.
    Type: Application
    Filed: January 6, 2023
    Publication date: March 21, 2024
    Inventors: Hsing-Kuo Hsia, Chen-Hua Yu, Jui Lin Chao
  • Publication number: 20240085621
    Abstract: A method includes encapsulating a first device die and a second device die in an encapsulant, and forming an interconnect structure over and electrically connecting to the first device die and the second device die. A waveguide is formed in the interconnect structure. An optical-engine based interconnect component is bonded to the interconnect structure. The optical-engine based interconnect component forms a part of a signal path that connects the first device die to the second device die.
    Type: Application
    Filed: January 6, 2023
    Publication date: March 14, 2024
    Inventors: Hsing-Kuo Hsia, Chen-Hua Yu, Chih-Wei Tseng, Jui Lin Chao
  • Patent number: 11823635
    Abstract: An LED backlight driver includes at least one driving chip configured to drive a backlight module. The at least one driving chip is disposed on at least one chip-on-film package, and not in direct contact with the backlight module to reduce heat transfer to the backlight module.
    Type: Grant
    Filed: September 6, 2021
    Date of Patent: November 21, 2023
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Chun-Fu Lin, Hsing-Kuo Chao, Jhih-Siou Cheng, Ju-Lin Huang, Wen-Hsin Cheng
  • Publication number: 20220122552
    Abstract: An LED backlight driver includes at least one driving chip configured to drive a backlight module. The at least one driving chip is disposed on at least one chip-on-film package, and not in direct contact with the backlight module to reduce heat transfer to the backlight module.
    Type: Application
    Filed: September 6, 2021
    Publication date: April 21, 2022
    Applicant: NOVATEK Microelectronics Corp.
    Inventors: Chun-Fu Lin, Hsing-Kuo Chao, Jhih-Siou Cheng, Ju-Lin Huang, Wen-Hsin Cheng
  • Patent number: 8797013
    Abstract: An adaptive slope-compensation method is applied for a switch-mode power supply. The switch-mode power supply has a power switch, and an inductor coupled to an input power. The power switch controls the inductor storing energy or releasing energy to generate an output voltage. The adaptive slope-compensation method includes detecting an inductor current passing through the inductor and to generate an inductor-current detecting voltage, detecting a duty cycle of the power switch, detecting a voltage variation of the inductor-current detecting voltage when the power switch is turned on, generating a slope-compensation signal according to the voltage variation and the duty cycle, and adjusting the timing of turning the power switch on or off. In this way, even if the operation conditions of the input power and the output voltage change, the system still can quickly response and does not generate sub-harmonic oscillation.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: August 5, 2014
    Assignee: Leadtrend Technology Corp.
    Inventors: Hsing-Kuo Chao, Yi-Shan Chu
  • Patent number: 8283809
    Abstract: A detecting device for detecting an operating mode is disclosed. The detecting device includes a pulse generator and a hold-up unit. The pulse generator is disposed for issuing a one-shot pulse signal in response to each of button signals respectively. The hold-up unit is disposed for receiving the button signals to respectively generate delayed button signals by way of clock delay determined by a clock signal. The one-shot pulse signal and the delayed button signals are used to determine an operating mode of a system.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: October 9, 2012
    Assignee: Leadtrend Technology Corp.
    Inventors: Yi-Shan Chu, Hsing-Kuo Chao
  • Publication number: 20120159207
    Abstract: A power management device of an SD memory card reader includes a power supply regulator and a controller. The controller controls the power supply regulator to provide a memory card voltage according to an external control signal transmitted from a single control pin. Wherein when the external control signal denotes an enable state, the power supply regulator provides the memory card voltage; when the external control signal denotes a disable state, the power supply regulator stops providing the memory card voltage and discharges the load capacitor; and when the external control signal returns to the enable state from the disable state in a predetermined duration, the power supply regulator changes the memory card voltage.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 21, 2012
    Inventors: Hsing-Kuo Chao, Yi-Shan Chu
  • Publication number: 20120074917
    Abstract: An adaptive slope-compensation method is applied for a switch-mode power supply. The switch-mode power supply has a power switch, and an inductor coupled to an input power. The power switch controls the inductor storing energy or releasing energy to generate an output voltage. The adaptive slope-compensation method includes detecting an inductor current passing through the inductor and to generate an inductor-current detecting voltage, detecting a duty cycle of the power switch, detecting a voltage variation of the inductor-current detecting voltage when the power switch is turned on, generating a slope-compensation signal according to the voltage variation and the duty cycle, and adjusting the timing of turning the power switch on or off. In this way, even if the operation conditions of the input power and the output voltage change, the system still can quickly response and does not generate sub-harmonic oscillation.
    Type: Application
    Filed: April 1, 2011
    Publication date: March 29, 2012
    Inventors: Hsing-Kuo Chao, Yi-Shan Chu
  • Patent number: 7961481
    Abstract: A pulse width modulation (PWM) control circuit is applied to a power converter with a charging capacitor. The PWM control circuit includes a PWM signal generator, a first comparator, and a reference voltage modulator. A PWM signal generator generates a PWM signal to control a power switch in the power converter. Two input terminals of the first comparator respectively receive a first reference voltage and a sensing voltage, which is proportional to a primary-side current of a transformer. When the power switch is turned on and the sensing voltage rises to the level of the first reference voltage, the first comparator outputs a first control signal to the PWM signal generator. Then, the PWM signal generator outputs a signal to turn off the power switch. The reference voltage modulator outputs the first reference voltage according to a feedback voltage relative to the output voltage of the power converter.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: June 14, 2011
    Assignee: Leadtrend Technology Corp.
    Inventors: Yi-Shan Chu, Yu-Bin Wang, Hsing-Kuo Chao
  • Patent number: 7772782
    Abstract: A light emitting diode (LED) driving device includes a power factor correction (PFC) circuit, a bridge switch circuit, a resonant circuit, a transformer and a feedback circuit. The PFC circuit adjusts an output signal thereof based on a feedback signal. The bridge switch circuit transforms the output signal of the PFC circuit into a pulse signal. The resonant circuit resonates and outputs a sinusoidal signal to a primary-side of the transformer based on the pulse signal. The feedback circuit outputs the feedback signal to the PFC circuit in response to a primary-side current of the transformer. Therefore, an output current of the LED driving device is adjusted through modulating the feedback circuit.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: August 10, 2010
    Assignee: Leadtrend Technology Corp.
    Inventors: Yi-Shan Chu, Hsing-Kuo Chao
  • Publication number: 20090271135
    Abstract: A detecting device for detecting an operating mode is disclosed. The detecting device includes a pulse generator and a hold-up unit. The pulse generator is disposed for issuing a one-shot pulse signal in response to each of button signals respectively. The hold-up unit is disposed for receiving the button signals to respectively generate delayed button signals by way of clock delay determined by a clock signal. The one-shot pulse signal and the delayed button signals are used to determine an operating mode of a system.
    Type: Application
    Filed: October 13, 2008
    Publication date: October 29, 2009
    Inventors: Yi-Shan Chu, Hsing-Kuo Chao
  • Publication number: 20090146575
    Abstract: A light emitting diode (LED) driving device includes a power factor correction (PFC) circuit, a bridge switch circuit, a resonant circuit, a transformer and a feedback circuit. The PFC circuit adjusts an output signal thereof based on a feedback signal. The bridge switch circuit transforms the output signal of the PFC circuit into a pulse signal. The resonant circuit resonates and outputs a sinusoidal signal to a primary-side of the transformer based on the pulse signal. The feedback circuit outputs the feedback signal to the PFC circuit in response to a primary-side current of the transformer. Therefore, an output current of the LED driving device is adjusted through modulating the feedback circuit.
    Type: Application
    Filed: December 5, 2007
    Publication date: June 11, 2009
    Inventors: Yi-Shan Chu, Hsing-Kuo Chao
  • Publication number: 20090128209
    Abstract: A pulse width modulation (PWM) control circuit is applied to a power converter with a charging capacitor. The PWM control circuit includes a PWM signal generator, a first comparator, and a reference voltage modulator. A PWM signal generator generates a PWM signal to control a power switch in the power converter. Two input terminals of the first comparator respectively receive a first reference voltage and a sensing voltage, which is proportional to a primary-side current of a transformer. When the power switch is turned on and the sensing voltage rises to the level of the first reference voltage, the first comparator outputs a first control signal to the PWM signal generator. Then, the PWM signal generator outputs a signal to turn off the power switch. The reference voltage modulator outputs the first reference voltage according to a feedback voltage relative to the output voltage of the power converter.
    Type: Application
    Filed: November 20, 2007
    Publication date: May 21, 2009
    Inventors: Yi-Shan Chu, Yu-Bin Wang, Hsing-Kuo Chao
  • Publication number: 20090091950
    Abstract: A power converting circuit with an open load protection function is electrically connected to a power supply providing a first voltage level, and outputs a second voltage level to drive a load. The power converting circuit includes a DC/DC converter and a rectifying element disposed between an output node and an input node of the DC/DC converter that forms a discharging loop with the DC/DC converter. The DC/DC converter receives the power, converts the first voltage level into the second voltage level and outputs the second voltage level to the load. The rectifying element is utilized to release a surge voltage produced by the DC/DC converter in an open load condition.
    Type: Application
    Filed: October 4, 2007
    Publication date: April 9, 2009
    Inventors: Hsing-Kuo Chao, Yi-Shan Chu, Yu-Chuan Liu