Patents by Inventor Hsing-Yeh Parker

Hsing-Yeh Parker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11896945
    Abstract: High surface area coatings are applied to solid substrates to increase the surface area available for solid-phase synthesis of polymers. The high surface area coatings use three-dimensional space to provide more area for functional groups to bind polymers than an untreated solid substrate. The polymers may be oligonucleotides, polypeptides, or another type of polymer. The solid substrate is a rigid supportive layer made from a material such as glass, a silicon material, a metal material, and plastic. The coating may be thin films, hydrogels, microparticles. The coating may be made from a metal oxide, a high-? dielectric, a low-? dielectric, an etched metal, a carbon material, or an organic polymer. The functional groups may be hydroxyl groups, amine groups, thiolate groups, alkenes, n-alkenes, alkalines, N-Hydroxysuccinimide (NHS)-activated esters, polyaniline, aminosilane groups, silanized oxides, oligothiophenes, and diazonium compounds.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: February 13, 2024
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Bichlien Hoang Nguyen, Karin Strauss, Hsing-Yeh Parker
  • Patent number: 11607660
    Abstract: High surface area coatings are applied to solid substrates to increase the surface area available for solid-phase synthesis of polymers. The high surface area coatings use three-dimensional space to provide more area for functional groups to bind polymers than an untreated solid substrate. The polymers may be oligonucleotides, polypeptides, or another type of polymer. The solid substrate is a rigid supportive layer made from a material such as glass, a silicon material, a metal material, and plastic. The coating may be thin films, hydrogels, microparticles. The coating may be made from a metal oxide, a high-? dielectric, a low-? dielectric, an etched metal, a carbon material, or an organic polymer. The functional groups may be hydroxyl groups, amine groups, thiolate groups, alkenes, n-alkenes, alkalines, N-Hydroxysuccinimide (NHS)-activated esters, polyaniline, aminosilane groups, silanized oxides, oligothiophenes, and diazonium compounds.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: March 21, 2023
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Bichlien Hoang Nguyen, Karin Strauss, Hsing-Yeh Parker
  • Publication number: 20220347645
    Abstract: A system includes a synthesizer unit having a fluid input to receive fluids and a communication input to receive commands to synthesize data-encoded DNA sequences and cleave the DNA. A first flexible chemistry reaction chamber module may be fluidically coupled to the synthesizer unit to receive the data-encoded DNA sequences and amplify the sequences. A deposition unit may be fluidically coupled to the first flexible chemistry reaction chamber module to receive the amplified DNA sequences and encapsulate the amplified DNA sequences into one or more wells in a storage plate for storage and retrieval to and from a plate storage unit. Retrieved DNA may be processed and read by further units.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 3, 2022
    Inventors: Bichlien H. NGUYEN, Douglas P. KELLEY, Karin STRAUSS, Robert CARLSON, Hsing-Yeh PARKER, John MULLIGAN, Luis H. CEZE, Yuan-Jyue CHEN, Douglas CARMEAN
  • Patent number: 11439970
    Abstract: A system includes a synthesizer unit having a fluid input to receive fluids and a communication input to receive commands to synthesize data-encoded DNA sequences and cleave the DNA. A first flexible chemistry reaction chamber module may be fluidically coupled to the synthesizer unit to receive the data-encoded DNA sequences and amplify the sequences. A deposition unit may be fluidically coupled to the first flexible chemistry reaction chamber module to receive the amplified DNA sequences and encapsulate the amplified DNA sequences into one or more wells in a storage plate for storage and retrieval to and from a plate storage unit. Retrieved DNA may be processed and read by further units.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: September 13, 2022
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Bichlien H Nguyen, Douglas P Kelley, Karin Strauss, Robert Carlson, Hsing-Yeh Parker, John Mulligan, Luis H Ceze, Yuan-Jyue Chen, Douglas Carmean
  • Publication number: 20220203324
    Abstract: High surface area coatings are applied to solid substrates to increase the surface area available for solid-phase synthesis of polymers. The high surface area coatings use three-dimensional space to provide more area for functional groups to bind polymers than an untreated solid substrate. The polymers may be oligonucleotides, polypeptides, or another type of polymer. The solid substrate is a rigid supportive layer made from a material such as glass, a silicon material, a metal material, and plastic. The coating may be thin films, hydrogels, microparticles. The coating may be made from a metal oxide, a high-? dielectric, a low-? dielectric, an etched metal, a carbon material, or an organic polymer. The functional groups may be hydroxyl groups, amine groups, thiolate groups, alkenes, n-alkenes, alkalines, N-Hydroxysuccinimide (NHS)-activated esters, polyaniline, aminosilane groups, silanized oxides, oligothiophenes, and diazonium compounds.
    Type: Application
    Filed: March 15, 2022
    Publication date: June 30, 2022
    Inventors: Bichlien Hoang NGUYEN, Karin STRAUSS, Hsing-Yeh PARKER
  • Patent number: 11305253
    Abstract: High surface area coatings are applied to solid substrates to increase the surface area available for solid-phase synthesis of polymers. The high surface area coatings use three-dimensional space to provide more area for functional groups to bind polymers than an untreated solid substrate. The polymers may be oligonucleotides, polypeptides, or another type of polymer. The solid substrate is a rigid supportive layer made from a material such as glass, a silicon material, a metal material, and plastic. The coating may be thin films, hydrogels, microparticles. The coating may be made from a metal oxide, a high-? dielectric, a low-? dielectric, an etched metal, a carbon material, or an organic polymer. The functional groups may be hydroxyl groups, amine groups, thiolate groups, alkenes, n-alkenes, alkalines, N-Hydroxysuccinimide (NHS)-activated esters, polyaniline, aminosilane groups, silanized oxides, oligothiophenes, and diazonium compounds.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: April 19, 2022
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Bichlien Hoang Nguyen, Karin Strauss, Hsing-Yeh Parker
  • Publication number: 20210106967
    Abstract: High surface area coatings are applied to solid substrates to increase the surface area available for solid-phase synthesis of polymers. The high surface area coatings use three-dimensional space to provide more area for functional groups to bind polymers than an untreated solid substrate. The polymers may be oligonucleotides, polypeptides, or another type of polymer. The solid substrate is a rigid supportive layer made from a material such as glass, a silicon material, a metal material, and plastic. The coating may be thin films, hydrogels, microparticles. The coating may be made from a metal oxide, a high-? dielectric, a low-? dielectric, an etched metal, a carbon material, or an organic polymer. The functional groups may be hydroxyl groups, amine groups, thiolate groups, alkenes, n-alkenes, alkalines, N-Hydroxysuccinimide (NHS)-activated esters, polyaniline, aminosilane groups, silanized oxides, oligothiophenes, and diazonium compounds.
    Type: Application
    Filed: October 9, 2019
    Publication date: April 15, 2021
    Inventors: Bichlien Hoang Nguyen, Karin Strauss, Hsing-Yeh Parker
  • Patent number: 10930370
    Abstract: Artificial polynucleotides may have different characteristics than natural polynucleotides so conventional base-calling algorithms may make incorrect base calls. However, because artificial polynucleotides are typically designed to have certain characteristics, the known characteristics of the artificial polynucleotide can be used to modify the base-calling algorithm. This disclosure describes polynucleotide sequencers adapted to sequence artificial polynucleotides by modifying a base-calling algorithm of the polynucleotide sequencer according to known characteristics of the artificial polynucleotides. The base-calling algorithm analyzes raw data generated by a polynucleotide sequencer and identifies which nucleotide base occupies a given position on a polynucleotide strand.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: February 23, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Karin Strauss, Siena Dumas Ang, Luis Ceze, Yuan-Jyue Chen, Hsing-Yeh Parker, Bichlien Nguyen, Robert Carlson
  • Publication number: 20190358604
    Abstract: A system includes a synthesizer unit having a fluid input to receive fluids and a communication input to receive commands to synthesize data-encoded DNA sequences and cleave the DNA. A first flexible chemistry reaction chamber module may be fluidically coupled to the synthesizer unit to receive the data-encoded DNA sequences and amplify the sequences. A deposition unit may be fluidically coupled to the first flexible chemistry reaction chamber module to receive the amplified DNA sequences and encapsulate the amplified DNA sequences into one or more wells in a storage plate for storage and retrieval to and from a plate storage unit. Retrieved DNA may be processed and read by further units.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 28, 2019
    Inventors: Bichlien H. Nguyen, Douglas P. Kelley, Karin Strauss, Robert Carlson, Hsing-Yeh Parker, John Mulligan, Luis H. Ceze, Yuan-Jyue Chen, Douglas Carmean
  • Publication number: 20180253528
    Abstract: Artificial polynucleotides may have different characteristics than natural polynucleotides so conventional base-calling algorithms may make incorrect base calls. However, because artificial polynucleotides are typically designed to have certain characteristics, the known characteristics of the artificial polynucleotide can be used to modify the base-calling algorithm. This disclosure describes polynucleotide sequencers adapted to sequence artificial polynucleotides by modifying a base-calling algorithm of the polynucleotide sequencer according to known characteristics of the artificial polynucleotides. The base-calling algorithm analyzes raw data generated by a polynucleotide sequencer and identifies which nucleotide base occupies a given position on a polynucleotide strand.
    Type: Application
    Filed: May 26, 2017
    Publication date: September 6, 2018
    Inventors: Karin Strauss, Siena Dumas Ang, Luis Ceze, Yuan-Jyue Chen, Hsing-Yeh Parker, Bichlien Nguyen, Robert Carlson
  • Patent number: 8580201
    Abstract: Embodiments of the present invention include processing steps and subsystems, within automated-biopolymer-synthesis systems and within other automated systems for organic-chemistry-based processing, for removing reagent solutions and solvents from reaction chambers following various synthetic reaction steps and washing steps undertaken during biopolymer synthesis. Embodiments of the present invention employ any of various different types of liquid-absorbing materials to wick, or remove by capillary action, liquids from reaction chambers. Wicking-based methods and subcomponents of the present invention remove significantly greater fractions of solutions from reaction chambers than conventional methods and subsystems and, in addition, are mechanically simpler and produce fewer deleterious side effects than currently used methods and subsystems.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: November 12, 2013
    Assignee: OligoCo, Inc.
    Inventors: Hsing-Yeh Parker, John C. Tabone, John Mulligan
  • Patent number: 8361396
    Abstract: Embodiments of the present invention are directed to automated-polymer-synthesis systems that include discrete reagent-solution-addition, wait-time, and reagent-solution-draining sub-systems which together significantly increase throughput and decrease sub-system idle time. The automated-polymer-synthesis systems that represent embodiments of the present invention additionally include switches at points in which carriers can be received from multiple input paths or output to multiple different output paths. The automated-polymer-synthesis systems that represent embodiments of the present invention generally include an input spur and output spur in addition to a main loop, allowing carriers containing only completed polymers to be removed and new carriers input, so that carriers traverse the automated-polymer-synthesis systems independently from one another.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: January 29, 2013
    Assignee: Oligoco, Inc.
    Inventors: Hsing-Yeh Parker, John C. Tabone, John Mulligan
  • Publication number: 20110256031
    Abstract: Embodiments of the present invention are directed to automated-polymer-synthesis systems that include discrete reagent-solution-addition, wait-time, and reagent-solution-draining sub-systems which together significantly increase throughput and decrease sub-system idle time. The automated-polymer-synthesis systems that represent embodiments of the present invention additionally include switches at points in which carriers can be received from multiple input paths or output to multiple different output paths. The automated-polymer-synthesis systems that represent embodiments of the present invention generally include an input spur and output spur in addition to a main loop, allowing carriers containing only completed polymers to be removed and new carriers input, so that carriers traverse the automated-polymer-synthesis systems independently from one another.
    Type: Application
    Filed: February 22, 2011
    Publication date: October 20, 2011
    Inventors: Hsing-Yeh Parker, John C. Tabone, John Mulligan
  • Publication number: 20110236270
    Abstract: Embodiments of the present invention include processing steps and subsystems, within automated-biopolymer-synthesis systems and within other automated systems for organic-chemistry-based processing, for removing reagent solutions and solvents from reaction chambers following various synthetic reaction steps and washing steps undertaken during biopolymer synthesis. Embodiments of the present invention employ any of various different types of liquid-absorbing materials to wick, or remove by capillary action, liquids from reaction chambers. Wicking-based methods and subcomponents of the present invention remove significantly greater fractions of solutions from reaction chambers than conventional methods and subsystems and, in addition, are mechanically simpler and produce fewer deleterious side effects than currently used methods and subsystems.
    Type: Application
    Filed: February 22, 2011
    Publication date: September 29, 2011
    Inventors: Hsing-Yeh Parker, John C. Tabone, John Mulligan
  • Publication number: 20090137027
    Abstract: Polynucleotides having in excess of 1,000 nucleotides can be prepared using a solid phase synthesis technique. A feature of the technique is the use of a reusable solid support that contains covalently bound oligonucleotide. This covalently bound oligonucleotide is annealed to a bridge oligonucleotide, where the bridge is also annealed to a first oligonucleotide that forms a portion of the target polynucleotide. After the target polynucleotide is synthesized, it can be removed from the solid support under denaturing conditions, and the solid support re-used to prepare additional target polynucleotides. The yield of the target polynucleotide increases when shearing force is applied to the solid support that is linked to the growing oligonucleotide. This shearing force is thought to extend the growing end of the oligonucleotide away from contact with other oligonucleotide bound to the solid support and make that end more accessible to annealing with solution oligonucleotide.
    Type: Application
    Filed: December 16, 2008
    Publication date: May 28, 2009
    Applicant: Blue Heron Biotechnology, Inc.
    Inventors: Hsing-Yeh Parker, John T. Mulligan
  • Patent number: 7482119
    Abstract: Polynucleotides having in excess of 1,000 nucleotides can be prepared using a solid phase synthesis technique. A feature of the technique is the use of a reusable solid support that contains covalently bound oligonucleotide. This covalently bound oligonucleotide is annealed to a bridge oligonucleotide, where the bridge is also annealed to a first oligonucleotide that forms a portion of the target polynucleotide. After the target polynucleotide is synthesized, it can be removed from the solid support under denaturing conditions, and the solid support re-used to prepare additional target polynucleotides. The yield of the target polynucleotide increases when shearing force is applied to the solid support that is linked to the growing oligonucleotide. This shearing force is thought to extend the growing end of the oligonucleotide away from contact with other oligonucleotide bound to the solid support and make that end more accessible to annealing with solution oligonucleotide.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: January 27, 2009
    Assignee: Blue Heron Biotechnology, Inc.
    Inventors: Hsing-Yeh Parker, John T. Mulligan
  • Publication number: 20050106606
    Abstract: Polynucleotides having in excess of 1,000 nucleotides can be prepared using a solid phase synthesis technique. A feature of the technique is the use of a reusable solid support that contains covalently bound oligonucleotide. This covalently bound oligonucleotide is annealed to a bridge oligonucleotide, where the bridge is also annealed to a first oligonucleotide that forms a portion of the target polynucleotide. After the target polynucleotide is synthesized, it can be removed from the solid support under denaturing conditions, and the solid support re-used to prepare additional target polynucleotides. The yield of the target polynucleotide increases when shearing force is applied to the solid support that is linked to the growing oligonucleotide. This shearing force is thought to extend the growing end of the oligonucleotide away from contact with other oligonucleotide bound to the solid support and make that end more accessible to annealing with solution oligonucleotide.
    Type: Application
    Filed: October 13, 2004
    Publication date: May 19, 2005
    Applicant: Blue Heron Biotechnology, Inc.
    Inventors: Hsing-Yeh Parker, John Mulligan
  • Patent number: 6887960
    Abstract: A bioadhesive composition is disclosed which includes copolymer particles containing as polymerized units, terminally unsaturated acid-containing oligomers and ethylenically unsaturated nonionic monomers. A method of preparing the bioadhesive composition and a method of using the bioadhesive composition are also disclosed.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: May 3, 2005
    Assignee: Rohm and Haas Company
    Inventors: Hsing-Yeh Parker, Allan Sachs Hoffman
  • Publication number: 20030228602
    Abstract: Polynucleotides having in excess of 1,000 nucleotides can be prepared using a solid phase synthesis technique. A feature of the technique is the use of a reusable solid support that contains covalently bound oligonucleotide. This covalently bound oligonucleotide is annealed to a bridge oligonucleotide, where the bridge is also annealed to a first oligonucleotide that forms a portion of the target polynucleotide. After the target polynucleotide is synthesized, it can be removed from the solid support under denaturing conditions, and the solid support re-used to prepare additional target polynucleotides. The yield of the target polynucleotide increases when shearing force is applied to the solid support that is linked to the growing oligonucleotide. This shearing force is thought to extend the growing end of the oligonucleotide away from contact with other oligonucleotide bound to the solid support and make that end more accessible to annealing with solution oligonucleotide.
    Type: Application
    Filed: April 1, 2003
    Publication date: December 11, 2003
    Applicant: Blue Heron Biotechnology, Inc.
    Inventors: Hsing-Yeh Parker, John T. Mulligan
  • Patent number: 6555641
    Abstract: Acrylic polymer compositions with crystalline side chains are disclosed. Solution polymerization, aqueous suspension polymerization, and aqueous dispersion polymerization processes for the preparation of the acrylic polymer compositions with crystalline side chains are also disclosed. Methods of use for the acrylic polymer compositions with crystalline side chains, including dry powder coatings; wax replacements in floor polishes and wood coatings; nonwoven and textile coatings; adhesives; and hot melt adhesives are also disclosed.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: April 29, 2003
    Assignee: Rohm and Haas Company
    Inventors: Hsing-Yeh Parker, Richard Foster Merritt, Zhenwen Fu, Scott Alan Ibbitson, Robert Howard Gore, Martha Alice Harbaugh Wolfersberger