Patents by Inventor Hsingjen Wann

Hsingjen Wann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200105618
    Abstract: Methods of manufacturing a semiconductor structure are provided. One of the methods includes: receiving a substrate including a first conductive region of a first transistor and a second conductive region of a second transistor, wherein the first transistor and the second transistor have different conductive types; performing an amorphization on the first conductive region and the second conductive region; performing an implantation over the first conductive region of the first transistor; forming a contact material layer over the first conductive region and the second conductive region; performing a thermal anneal on the first conductive region and the second conductive region; and performing a laser anneal on the first conductive region and the second conductive region.
    Type: Application
    Filed: May 6, 2019
    Publication date: April 2, 2020
    Inventors: CHUN HSIUNG TSAI, CHENG-YI PENG, CHING-HUA LEE, CHUNG-CHENG WU, CLEMENT HSINGJEN WANN
  • Publication number: 20200083318
    Abstract: A capacitor includes a first graphene structure having a first plurality of graphene layers. The capacitor further includes a dielectric layer over the first graphene structure. The capacitor further includes a second graphene structure over the dielectric layer, wherein the second graphene structure has a second plurality of graphene layers.
    Type: Application
    Filed: November 13, 2019
    Publication date: March 12, 2020
    Inventors: Chewn-Pu Jou, Chih-Hsin Ko, Po-Wen Chiu, Chao-Ching Cheng, Chun-Chieh Lu, Chi-Feng Huang, Huan-Neng Chen, Fu-Lung Hsueh, Clement Hsingjen Wann
  • Publication number: 20200075748
    Abstract: A method for forming a semiconductor structure is provided. The method includes the following operations. A substrate is received. The substrate includes a fin structure, a semiconductor layer over the fin structure, and a dielectric layer sandwiched between the fin structure and the semiconductor layer. The semiconductor layer is patterned to form a sacrificial gate layer over a portion of the fin structure. A first cleaning operation is performed with a HF solution. Spacers are formed over sidewalls of the sacrificial gate layer. Recesses are formed in the fin structure at two sides of the sacrificial gate layer. A second cleaning operation is performed with an HF-containing plasma.
    Type: Application
    Filed: April 29, 2019
    Publication date: March 5, 2020
    Inventors: CHUN HSIUNG TSAI, RU-SHANG HSIAO, CLEMENT HSINGJEN WANN
  • Publication number: 20200035789
    Abstract: A method for manufacturing a semiconductor device is described that comprises providing a substrate, forming a plurality of fins having a first semiconductor material, replacing a first portion of at least one of the fins with a second semiconductor material, and distributing the second semiconductor material from the first portion to a second portion of the at least one of the fins.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Yi-Jing Lee, Cheng-Hsien Wu, Chih-Hsin Ko, Clement Hsingjen Wann
  • Patent number: 10535573
    Abstract: Disclosed herein is a method for forming a test key system for characterizing wafer processing states, the method comprising forming a plurality of shallow trench isolation structures (STIs) on a substrate of a wafer and in a scribe line of the wafer and forming a test key on the substrate of a wafer and in the scribe line of the wafer. Forming the test key comprises forming at least one test key group having a plurality of test key series, each of the plurality of test key series having a plurality of test pads, each one of the plurality of test key series having a first physical characteristic different from the first physical characteristic of other test key series the at least one first test key group.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Publication number: 20200013869
    Abstract: A semiconductor device has a semiconductor substrate with a dielectric layer disposed thereon. A trench is defined in the dielectric layer. A metal gate structure is disposed in the trench. The metal gate structure includes a first layer and a second layer disposed on the first layer. The first layer extends to a first height in the trench and the second layer extends to a second height in the trench; the second height is less than the first height.
    Type: Application
    Filed: September 16, 2019
    Publication date: January 9, 2020
    Inventors: Yu-Lien HUANG, Chi-Wen LIU, Clement Hsingjen WANN, Ming-Huan TSAI, Zhao-Cheng CHEN
  • Patent number: 10516031
    Abstract: A method of fabricating a semiconductor device includes depositing a contact etch stop layer (CESL) over a dummy gate electrode, a source/drain (S/D) region and an isolation feature. The method further includes performing a first CMP to expose the dummy gate electrode. The method further includes removing an upper portion of the CESL. The method further includes performing a second CMP using a slurry different from the first CMP to expose the CESL over the S/D region, wherein, following the second CMP, an entire top surface of the CESL over the S/D region and over the isolation feature is substantially level with a top surface of the dummy gate electrode.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: December 24, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Neng-Kuo Chen, Clement Hsingjen Wann, Yi-An Lin, Chun-Wei Chang, Sey-Ping Sun
  • Patent number: 10515846
    Abstract: A multilayer semiconductor device structure having different circuit functions on different semiconductor device layers is provided. The semiconductor structure comprises a first semiconductor device layer fabricated on a bulk substrate. The first semiconductor device layer comprises a first semiconductor device for performing a first circuit function. The first semiconductor device layer includes a patterned top surface of different materials. The semiconductor structure further comprises a second semiconductor device layer fabricated on a semiconductor-on-insulator (“SOI”) substrate. The second semiconductor device layer comprises a second semiconductor device for performing a second circuit function. The second circuit function is different from the first circuit function. A bonding surface coupled between the patterned top surface of the first semiconductor device layer and a bottom surface of the SOI substrate is included.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: December 24, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Yi-Tang Lin, Chun Hsiung Tsai, Clement Hsingjen Wann
  • Patent number: 10510754
    Abstract: An embodiment complimentary metal-oxide-semiconductor (CMOS) device and an embodiment method of forming the same are provided. The embodiment CMOS device includes an n-type metal-oxide-semiconductor (NMOS) having a titanium-containing layer interposed between a first metal contact and an NMOS source and a second metal contact and an NMOS drain and a p-type metal-oxide-semiconductor (PMOS) having a PMOS source and a PMOS drain, the PMOS source having a first titanium-containing region facing a third metal contact, the PMOS drain including a second titanium-containing region facing a fourth metal contact.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Clement Hsingjen Wann, Chih-Hsin Ko, Cheng-Hsien Wu, Ding-Kang Shih, Hau-Yu Lin
  • Patent number: 10510827
    Abstract: A capacitor includes a first graphene structure having a first plurality of graphene layers. The capacitor further includes a dielectric layer over the first graphene structure. The capacitor further includes a second graphene structure over the dielectric layer, wherein the second graphene structure has a second plurality of graphene layers.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chewn-Pu Jou, Chih-Hsin Ko, Po-Wen Chiu, Chao-Ching Cheng, Chun-Chieh Lu, Chi-Feng Huang, Huan-Neng Chen, Fu-Lung Hsueh, Clement Hsingjen Wann
  • Patent number: 10504993
    Abstract: A method for manufacturing a semiconductor device is described that comprises providing a substrate, forming a plurality of fins having a first semiconductor material, replacing a first portion of at least one of the fins with a second semiconductor material, and distributing the second semiconductor material from the first portion to a second portion of the at least one of the fins.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: December 10, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Yi-Jing Lee, Cheng-Hsien Wu, Chih-Hsin Ko, Clement Hsingjen Wann
  • Publication number: 20190341473
    Abstract: The fin structure includes a first portion and a second, lower portion separated at a transition. The first portion has sidewalls that are substantially perpendicular to the major surface of the substrate. The lower portion has tapered sidewalls on opposite sides of the upper portion and a base having a second width larger than the first width.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 7, 2019
    Inventors: Feng YUAN, Hung-Ming CHEN, Tsung-Lin LEE, Chang-Yun CHANG, Clement Hsingjen WANN
  • Patent number: 10418456
    Abstract: A method of forming a semiconductor device having a semiconductor substrate with a dielectric layer disposed thereon. A trench is defined in the dielectric layer. A metal gate structure is formed in the trench. The metal gate structure includes a first layer and a second layer disposed on the first layer. The first layer extends to a first height in the trench and the second layer extends to a second height in the trench; the second height is greater than the first height. In some embodiments, the second layer is a work function metal and the first layer is a dielectric. In some embodiments, the second layer is a barrier layer.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: September 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Lien Huang, Chi-Wen Liu, Clement Hsingjen Wann, Ming-Huan Tsai, Zhao-Cheng Chen
  • Publication number: 20190273014
    Abstract: The embodiments of mechanisms for doping wells of finFET devices described in this disclosure utilize depositing doped films to dope well regions. The mechanisms enable maintaining low dopant concentration in the channel regions next to the doped well regions. As a result, transistor performance can be greatly improved. The mechanisms involve depositing doped films prior to forming isolation structures for transistors. The dopants in the doped films are used to dope the well regions near fins. The isolation structures are filled with a flowable dielectric material, which is converted to silicon oxide with the usage of microwave anneal. The microwave anneal enables conversion of the flowable dielectric material to silicon oxide without causing dopant diffusion. Additional well implants may be performed to form deep wells. Microwave anneal(s) may be used to anneal defects in the substrate and fins.
    Type: Application
    Filed: May 20, 2019
    Publication date: September 5, 2019
    Inventors: Chun Hsiung Tsai, Yan-Ting Lin, Clement Hsingjen Wann
  • Publication number: 20190252261
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20190252546
    Abstract: An embodiment is a structure comprising a substrate, a high energy bandgap material, and a high carrier mobility material. The substrate comprises a first isolation region and a second isolation region. Each of first and second isolation regions extends below a first surface of the substrate between the first and second isolation regions. The high energy bandgap material is over the first surface of the substrate and is disposed between the first and second isolation regions. The high carrier mobility material is over the high energy bandgap material. The high carrier mobility material extends higher than respective top surfaces of the first and second isolation regions to form a fin.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Cheng-Hsien Wu, Chih-Hsin Ko, Clement Hsingjen Wann
  • Publication number: 20190245061
    Abstract: Methods of semiconductor arrangement formation are provided. A method of forming the semiconductor arrangement includes forming a first nucleus on a substrate in a trench or between dielectric pillars on the substrate. Forming the first nucleus includes applying a first source material beam at a first angle relative to a top surface of the substrate and concurrently applying a second source material beam at a second angle relative to the top surface of the substrate. A first semiconductor column is formed from the first nucleus by rotating the substrate while applying the first source material beam and the second source material beam. Forming the first semiconductor column in the trench or between the dielectric pillars using the first source material beam and the second source material beam restricts the formation of the first semiconductor column to a single direction.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 8, 2019
    Inventors: Wei-Chieh CHEN, Hao-Hsiung LIN, Shu-Han CHEN, You-Ru LIN, Cheng-Hsien WU, Chih-Hsin KO, Clement Hsingjen WANN
  • Publication number: 20190237370
    Abstract: Disclosed herein is a method for forming a test key system for characterizing wafer processing states, the method comprising forming a plurality of shallow trench isolation structures (STIs) on a substrate of a wafer and in a scribe line of the wafer and forming a test key on the substrate of a wafer and in the scribe line of the wafer. Forming the test key comprises forming at least one test key group having a plurality of test key series, each of the plurality of test key series having a plurality of test pads, each one of the plurality of test key series having a first physical characteristic different from the first physical characteristic of other test key series the at least one first test key group.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Wei-Chun Tsai
  • Patent number: 10355108
    Abstract: An exemplary method of forming a fin field effect transistor that includes first and second etching processes to form a fin structure. The fin structure includes an upper portion and a lower portion separated at a transition. The upper portion has sidewalls that are substantially perpendicular to the major surface of the substrate. The lower portion has tapered sidewalls on opposite sides of the upper portion and a base having a second width larger than the first width.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: July 16, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng Yuan, Hung-Ming Chen, Tsung-Lin Lee, Chang-Yun Chang, Clement Hsingjen Wann
  • Patent number: 10333001
    Abstract: A fin structure disposed over a substrate and a method of forming a fin structure are disclosed. The fin structure includes a mesa, a channel disposed over the mesa, and a convex-shaped feature disposed between the channel and the mesa. The mesa has a first semiconductor material, and the channel has a second semiconductor material different from the first semiconductor material. The convex-shaped feature is stepped-shaped, stair-shaped, or ladder-shaped. The convex-shaped feature includes a first isolation feature disposed between the channel and the mesa, and a second isolation feature disposed between the channel and the first isolation feature. The first isolation feature is U-shaped, and the second isolation feature is rectangular-shaped. A portion of the second isolation feature is surrounded by the channel and another portion of the second isolation feature is surrounded by the first isolation feature.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: June 25, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gin-Chen Huang, Ching-Hong Jiang, Neng-Kuo Chen, Sey-Ping Sun, Clement Hsingjen Wann