Patents by Inventor Hsiu-Jen Lin

Hsiu-Jen Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190355710
    Abstract: A package includes a package component, which further includes a top surface and a metal pad at the top surface of the package component. The package further includes a non-reflowable electrical connector over and bonded to the metal pad, and a molding material over the package component. The non-reflowable electrical connector is molded in the molding material and in contact with the molding material. The non-reflowable electrical connector has a top surface lower than a top surface of the molding compound.
    Type: Application
    Filed: August 5, 2019
    Publication date: November 21, 2019
    Inventors: Kuei-Wei Huang, Chih-Wei Lin, Hsiu-Jen Lin, Wei-Hung Lin, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 10475679
    Abstract: Presented herein is a device processing boat comprising a base and at least one unit retainer disposed in the base. The device further comprises a cover having at least one recess configured to accept and retain at least one unit. The at least one recess is aligned over, and configured to hold the at least one unit over, at least a portion of the at least one unit retainer. The cover is retained to the device processing boat by the at least one unit retainer. At least one pressure sensor having at least one sensel is disposed in the base. The sensel is configured to sense a clamping force applied by the cover to the at least one unit.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: November 12, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ai-Tee Ang, Hsiu-Jen Lin, Wei-Hung Lin, Ming-Da Cheng, Chung-Shi Liu
  • Publication number: 20190296002
    Abstract: In an embodiment, a method includes: aligning a first package component with a second package component, the first package component having a first region and a second region, the first region including a first conductive connector, the second region including a second conductive connector; performing a first laser shot on a first portion of a top surface of the first package component, the first laser shot reflowing the first conductive connector of the first region, the first portion of the top surface of the first package component completely overlapping the first region; and after performing the first laser shot, performing a second laser shot on a second portion of the top surface of the first package component, the second laser shot reflowing the second conductive connector of the second region, the second portion of the top surface of the first package component completely overlapping the second region.
    Type: Application
    Filed: October 1, 2018
    Publication date: September 26, 2019
    Inventors: Hao-Jan Pei, Hsiu-Jen Lin, Wei-Yu Chen, Philip Yu-Shuan Chung, Chia-Shen Cheng, Kuei-Wei Huang, Ching-Hua Hsieh, Chung-Shi Liu, Chen-Hua Yu
  • Publication number: 20190279958
    Abstract: A method includes performing a first laser shot on a first portion of a top surface of a first package component. The first package component is over a second package component, and a first solder region between the first package component and the second package component is reflowed by the first laser shot. After the first laser shot, a second laser shot is performed on a second portion of the top surface of the first package component. A second solder region between the first package component and the second package component is reflowed by the second laser shot.
    Type: Application
    Filed: September 5, 2018
    Publication date: September 12, 2019
    Inventors: Wei-Yu Chen, Chia-Shen Cheng, Hao-Jan Pei, Philip Yu-Shuan Chung, Kuei-Wei Huang, Yu-Peng Tsai, Hsiu-Jen Lin, Ching-Hua Hsieh, Chen-Hua Yu, Chung-Shi Liu
  • Publication number: 20190252340
    Abstract: A package structure is provided. The package structure includes a semiconductor die and a protective layer surrounding the semiconductor die. The package structure also includes a conductive structure and a warpage-control element over a same side of the protective layer. A bottom surface of the warpage-control element is higher than a bottom surface of the conductive structure. The bottom surface of the warpage-control element is lower than a top surface of the conductive bump.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 15, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Hao-Jan PEI, Chih-Chiang TSAO, Wei-Yu CHEN, Hsiu-Jen LIN, Ming-Da CHENG, Ching-Hua HSIEH, Chung-Shi LIU
  • Publication number: 20190244918
    Abstract: Methods of forming connector pad structures, interconnect structures, and structures thereof are disclosed. In some embodiments, a method of forming a connector pad structure includes forming an underball metallization (UBM) pad, and increasing a surface roughness of the UBM pad by exposing the UBM pad to a plasma treatment. A polymer material is formed over a first portion of the UBM pad, leaving a second portion of the UBM pad exposed.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 8, 2019
    Inventors: Chia-Lun Chang, Chung-Shi Liu, Hsiu-Jen Lin, Hsien-Wei Chen, Ming-Da Cheng, Wei-Yu Chen
  • Patent number: 10373941
    Abstract: A package includes a package component, which further includes a top surface and a metal pad at the top surface of the package component. The package further includes a non-reflowable electrical connector over and bonded to the metal pad, and a molding material over the package component. The non-reflowable electrical connector is molded in the molding material and in contact with the molding material. The non-reflowable electrical connector has a top surface lower than a top surface of the molding compound.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: August 6, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuei-Wei Huang, Chih-Wei Lin, Hsiu-Jen Lin, Wei-Hung Lin, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 10297579
    Abstract: A structure includes a first package and a second package. The second package is coupled to the first package by one or more connectors. Epoxy flux residue is disposed around the connectors and in contact with the connectors. A method includes providing a first package having first connector pads and providing a second package having corresponding second connector pads. Solder paste is printed on each of the first connector pads. Epoxy flux is printed on each of the solder paste. The first and second connector pads are aligned and the packages are pressed together. The solder paste is reflowed to connect the first connector pads to the second connector pads while leaving an epoxy flux residue around each of the connections.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: May 21, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Wei-Yu Chen, Kuei-Wei Huang, Hsiu-Jen Lin, Ming-Da Cheng, Ching-Hua Hsieh, Chung-Shi Liu, Hsuan-Ting Kuo
  • Publication number: 20190148262
    Abstract: A semiconductor structure includes a die embedded in a molding material, the die having die connectors on a first side; a first redistribution structure at the first side of the die, the first redistribution structure being electrically coupled to the die through the die connectors; a second redistribution structure at a second side of the die opposing the first side; and a thermally conductive material in the second redistribution structure, the die being interposed between the thermally conductive material and the first redistribution structure, the thermally conductive material extending through the second redistribution structure, and the thermally conductive material being electrically isolated.
    Type: Application
    Filed: March 29, 2018
    Publication date: May 16, 2019
    Inventors: Hao-Jan Pei, Wei-Yu Chen, Chia-Shen Cheng, Chih-Chiang Tsao, Cheng-Ting Chen, Chia-Lun Chang, Chih-Wei Lin, Hsiu-Jen Lin, Ching-Hua Hsieh, Chung-Shi Liu
  • Publication number: 20190148301
    Abstract: In an embodiment, a device includes: a back-side redistribution structure including: a metallization pattern on a first dielectric layer; and a second dielectric layer on the metallization pattern; a through via extending through the first dielectric layer to contact the metallization pattern; an integrated circuit die adjacent the through via on the first dielectric layer; a molding compound on the first dielectric layer, the molding compound encapsulating the through via and the integrated circuit die; a conductive connector extending through the second dielectric layer to contact the metallization pattern, the conductive connector being electrically connected to the through via; and an intermetallic compound at the interface of the conductive connector and the metallization pattern, the intermetallic compound extending only partially into the metallization pattern.
    Type: Application
    Filed: February 28, 2018
    Publication date: May 16, 2019
    Inventors: Tzu-Sung Huang, Hsiu-Jen Lin, Hao-Yi Tsai, Ming Hung Tseng, Tsung-Hsien Chiang, Tin-Hao Kuo, Yen-Liang Lin
  • Publication number: 20190139886
    Abstract: A package structure includes an insulating encapsulation, at least one die, and conductive structures. The at least one die is encapsulated in the insulating encapsulation. The conductive structures are located aside of the at least one die and surrounded by the insulating encapsulation, and at least one of the conductive structures is electrically connected to the at least one die. Each of the conductive structures has a first surface, a second surface opposite to the first surface and a slant sidewall connecting the first surface and the second surface, and each of the conductive structures has a top diameter greater than a bottom diameter thereof, and wherein each of the conductive structures has a plurality of pores distributed therein.
    Type: Application
    Filed: January 23, 2018
    Publication date: May 9, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Yu Chen, Chih-Hua Chen, Ching-Hua Hsieh, Hsiu-Jen Lin, Yu-Chih Huang, Yu-Peng Tsai, Chia-Shen Cheng, Chih-Chiang Tsao, Jen-Jui Yu
  • Patent number: 10276548
    Abstract: An embodiment package includes a first package. The first package includes a first integrated circuit die, an encapsulant around the first integrated circuit die, and redistribution layers over the encapsulant and the first integrated circuit die. The package also includes a second package bonded to the first package by a plurality of functional connectors. The functional connectors and the redistribution layers electrically connect a second integrated circuit die of the second package to the first integrated circuit die. The package also includes a plurality of dummy connectors disposed between the first package and the second package. One end of each of the plurality of dummy connectors facing the first package is physically separated from the first package.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Shien Chen, Hsiu-Jen Lin, Ming-Chih Yew, Ming-Da Cheng, Yi-Jen Lai, Yu-Tse Su, Sey-Ping Sun, Yang-Che Chen
  • Patent number: 10276536
    Abstract: Structures and formation methods of a chip package are provided. The method includes forming a protective layer to surround a semiconductor die, and the protective layer has opposing first and second surfaces. The method also includes forming a dielectric layer over the first surface of the protective layer and the semiconductor die. The method further includes forming a conductive feature over the dielectric layer such that the conductive feature is electrically connected to a conductive element of the semiconductor die. In addition, the method includes printing a warpage-control element over the second surface of the protective layer and the semiconductor die such that the semiconductor die is between the warpage-control element and the dielectric layer.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: April 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hao-Jan Pei, Chih-Chiang Tsao, Wei-Yu Chen, Hsiu-Jen Lin, Ming-Da Cheng, Ching-Hua Hsieh, Chung-Shi Liu
  • Patent number: 10269739
    Abstract: Methods of forming connector pad structures, interconnect structures, and structures thereof are disclosed. In some embodiments, a method of forming a connector pad structure includes forming an underball metallization (UBM) pad, and increasing a surface roughness of the UBM pad by exposing the UBM pad to a plasma treatment. A polymer material is formed over a first portion of the UBM pad, leaving a second portion of the UBM pad exposed.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Lun Chang, Chung-Shi Liu, Hsiu-Jen Lin, Hsien-Wei Chen, Ming-Da Cheng, Wei-Yu Chen
  • Publication number: 20190115326
    Abstract: An embodiment package includes a first package. The first package includes a first integrated circuit die, an encapsulant around the first integrated circuit die, and redistribution layers over the encapsulant and the first integrated circuit die. The package also includes a second package bonded to the first package by a plurality of functional connectors. The functional connectors and the redistribution layers electrically connect a second integrated circuit die of the second package to the first integrated circuit die. The package also includes a plurality of dummy connectors disposed between the first package and the second package. One end of each of the plurality of dummy connectors facing the first package is physically separated from the first package.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 18, 2019
    Inventors: Chen-Shien Chen, Hsiu-Jen Lin, Ming-Chih Yew, Ming-Da Cheng, Yi-Jen Lai, Yu-Tse Su, Sey-Ping Sun, Yang-Che Chen
  • Publication number: 20190096839
    Abstract: According to an exemplary embodiment, a substrate having a first area and a second area is provided. The substrate includes a plurality of pads. Each of the pads has a pad size. The pad size in the first area is larger than the pad size in the second area.
    Type: Application
    Filed: November 26, 2018
    Publication date: March 28, 2019
    Inventors: Wei-Hung Lin, Hsiu-Jen Lin, Ming-Da Cheng, Yu-Min Liang, Chen-Shien Chen, Chung-Shi Liu
  • Patent number: 10157862
    Abstract: An integrated fan-out package including an integrated circuit component, an insulating encapsulation, a redistribution circuit structure and a plurality of conductive terminals is provided. The insulating encapsulation laterally encapsulates sidewalls of the integrated circuit component. The redistribution circuit structure is disposed on the insulating encapsulation and the integrated circuit component. The redistribution circuit structure is electrically connected to the integrated circuit component and the redistribution circuit structure includes a plurality of ball pads. Each of the conductive terminals includes a conductive ball and a ring-shaped flux structure, wherein each of the conductive balls is disposed on and electrically connected to one of the ball pads. Each of the ring-shaped flux structures is disposed on the redistribution circuit structure. Each of the ring-shaped flux structure is disposed around and in contact with a bottom portion of the conductive ball.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Yu Chen, Ching-Hua Hsieh, Chung-Shi Liu, Hsiu-Jen Lin, Chia-Lun Chang
  • Publication number: 20180358325
    Abstract: Tools and systems for processing semiconductor devices, and methods of processing semiconductor devices are disclosed. In some embodiments, a method of using a tool for processing semiconductor devices includes a tool with a second material disposed over a first material, and a plurality of apertures disposed within the first material and the second material. The second material comprises a higher reflectivity than the first material. Each of the apertures is adapted to retain a package component over a support during an exposure to energy.
    Type: Application
    Filed: July 31, 2018
    Publication date: December 13, 2018
    Inventors: Kuei-Wei Huang, Hsiu-Jen Lin, Ai-Tee Ang, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 10153180
    Abstract: A system and method for applying an underfill is provided. An embodiment comprises applying an underfill to a substrate and patterning the underfill. Once patterned other semiconductor devices, such as semiconductor dies or semiconductor packages may then be attached to the substrate through the underfill, with electrical connections from the other semiconductor devices extending into the pattern of the underfill.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: December 11, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Tse Chen, Hsiu-Jen Lin, Wei-Hung Lin, Kuei-Wei Huang, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 10141281
    Abstract: According to an exemplary embodiment, a substrate having a first area and a second area is provided. The substrate includes a plurality of pads. Each of the pads has a pad size. The pad size in the first area is larger than the pad size in the second area.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: November 27, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Hung Lin, Hsiu-Jen Lin, Ming-Da Cheng, Yu-Min Liang, Chen-Shien Chen, Chung-Shi Liu