Patents by Inventor Hsueh-Hsing Lu

Hsueh-Hsing Lu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170020008
    Abstract: A display system includes a first display panel, an extension display panel, and an optical covering layer. The first display panel has a first viewing area and a first peripheral strip adjacent to one side of the first viewing area. The extension display panel at least partially overlaps the image-displaying side of the first display panel and includes an extension viewing area. The extension viewing area at least partially overlaps the first peripheral strip within a projecting region of the first display panel and connects the first viewing area. The optical covering layer covers the image-displaying side of the first viewing area and the image-displaying side of the extension viewing area.
    Type: Application
    Filed: July 13, 2016
    Publication date: January 19, 2017
    Inventors: Chih-Hung Tsai, Hsueh-Hsing Lu, Chih-Pang Chang, Yu-Hsin Lin
  • Patent number: 9263481
    Abstract: The array substrate includes a substrate, a thin film transistor (TFT) and a pixel electrode. The TFT is disposed on the substrate and includes a gate electrode, a gate insulating layer, a patterned semiconductor layer, a patterned etching stop layer, a patterned hard mask layer, a source electrode and a drain electrode. The patterned gate insulating layer is disposed on the gate electrode. The patterned semiconductor layer is disposed on the patterned gate insulating layer. The patterned etching stop layer is disposed on the patterned semiconductor layer. The source and the drain electrodes are disposed on the patterned etching stop layer and the patterned semiconductor layer. The patterned hard mask layer is disposed between the source electrode and the patterned etching stop layer and disposed between the drain electrode and the patterned etching stop layer. The pixel electrode is disposed on the substrate and electrically connected to the TFT.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: February 16, 2016
    Assignee: AU Optronics Corp.
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Patent number: 9196740
    Abstract: A pixel structure including a substrate, a gate, an insulation layer, a metal oxide semiconductor (MOS) layer, a source and a drain, at least one film layer, and a first electrode layer is provided. The gate is disposed on the substrate. The insulation layer covers the gate. The MOS layer is disposed on the insulation layer above the gate. The source and the drain are disposed on the MOS layer. The film layer covers the MOS layer and includes a transparent photocatalytic material, wherein the transparent photocatalytic material blocks ultraviolet light from reaching the MOS layer. The first electrode layer is electrically connected to the source or the drain.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: November 24, 2015
    Assignee: Au Optronics Corporation
    Inventors: Cheng-Wei Chou, Hsueh-Hsing Lu, Hung-Che Ting, Tsung-Hsiang Shih, Chia-Yu Chen
  • Patent number: 9147700
    Abstract: A manufacturing method of an array substrate includes following steps. A first photolithography process is performed to form a gate electrode on a substrate. A gate insulating layer is formed to cover the substrate and the gate electrode. A second photolithography process is performed to form a patterned semiconductor layer and a patterned etching stop layer. A semiconductor layer and an etching stop layer are successively formed on the gate insulating layer, and a second patterned photoresist is formed on the etching stop layer. The etching stop layer uncovered by the second patterned photoresist is removed. The semiconductor layer uncovered by the second patterned photoresist is removed for forming the patterned semiconductor on the gate insulating layer. A patterned etching stop layer is formed on the patterned semiconductor layer by etching the second patterned photoresist and the etching stop layer.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: September 29, 2015
    Assignee: AU Optronics Corp.
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Publication number: 20150126006
    Abstract: A manufacturing method of an array substrate includes following steps. A first photolithography process is performed to form a gate electrode on a substrate. A gate insulating layer is formed to cover the substrate and the gate electrode. A second photolithography process is performed to form a patterned semiconductor layer and a patterned etching stop layer. A semiconductor layer and an etching stop layer are successively formed on the gate insulating layer, and a second patterned photoresist is formed on the etching stop layer. The etching stop layer uncovered by the second patterned photoresist is removed. The semiconductor layer uncovered by the second patterned photoresist is removed for forming the patterned semiconductor on the gate insulating layer. A patterned etching stop layer is formed on the patterned semiconductor layer by etching the second patterned photoresist and the etching stop layer.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Publication number: 20150123128
    Abstract: The array substrate includes a substrate, a thin film transistor (TFT) and a pixel electrode. The TFT is disposed on the substrate and includes a gate electrode, a gate insulating layer, a patterned semiconductor layer, a patterned etching stop layer, a patterned hard mask layer, a source electrode and a drain electrode. The patterned gate insulating layer is disposed on the gate electrode. The patterned semiconductor layer is disposed on the patterned gate insulating layer. The patterned etching stop layer is disposed on the patterned semiconductor layer. The source and the drain electrodes are disposed on the patterned etching stop layer and the patterned semiconductor layer. The patterned hard mask layer is disposed between the source electrode and the patterned etching stop layer and disposed between the drain electrode and the patterned etching stop layer. The pixel electrode is disposed on the substrate and electrically connected to the TFT.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 7, 2015
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Patent number: 8969146
    Abstract: A manufacturing method of an array substrate includes the following steps. A gate electrode and a gate insulator layer are successively formed on a substrate. A semiconductor layer, an etching stop layer, a hard mask layer, and a second patterned photoresist are successively formed on the gate insulator layer. The second patterned photoresist is employed for performing an over etching process to the hard mask layer to form a patterned hard mask layer. The second patterned photoresist is employed for performing a first etching process to the etching stop layer. The second patterned photoresist is then employed for performing a second etching process to the semiconductor layer to form a patterned semiconductor layer. The etching stop layer uncovered by the patterned hard mask layer is then removed for forming a patterned etching stop layer.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 3, 2015
    Assignee: AU Optronics Corp.
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Patent number: 8759165
    Abstract: A manufacturing method of an array substrate includes the following steps. A first conductive layer, a gate insulating layer, a semiconductor layer, an etching stop layer, and a first patterned photoresist are successively formed on a substrate. The etching stop layer and the semiconductor layer uncovered by the first patterned photoresist are then removed by a first etching process. A patterned gate insulating layer and a patterned etching stop layer are then formed through a second etching process. The first conductive layer uncovered by the patterned gate insulating layer is then removed to form a gate electrode. The semiconductor layer uncovered by the patterned etching stop layer is then removed to form a patterned semiconductor layer and partially expose the patterned gate insulating layer.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: June 24, 2014
    Assignee: AU Optronics Corp.
    Inventors: Hui-Ling Ku, Chia-Yu Chen, Yi-Chen Chung, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Publication number: 20140127844
    Abstract: A manufacturing method of an array substrate includes the following steps. A first conductive layer, a gate insulating layer, a semiconductor layer, an etching stop layer, and a first patterned photoresist are successively formed on a substrate. The etching stop layer and the semiconductor layer uncovered by the first patterned photoresist are then removed by a first etching process. A patterned gate insulating layer and a patterned etching stop layer are then formed through a second etching process. The first conductive layer uncovered by the patterned gate insulating layer is then removed to form a gate electrode. The semiconductor layer uncovered by the patterned etching stop layer is then removed to form a patterned semiconductor layer and partially expose the patterned gate insulating layer.
    Type: Application
    Filed: January 15, 2014
    Publication date: May 8, 2014
    Applicant: AU Optronics Corp.
    Inventors: Hui-Ling Ku, Chia-Yu Chen, Yi-Chen Chung, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Patent number: 8674365
    Abstract: A manufacturing method of an array substrate includes the following steps. A first conductive layer, a gate insulating layer, a semiconductor layer, an etching stop layer, and a first patterned photoresist are successively formed on a substrate. The etching stop layer and the semiconductor layer uncovered by the first patterned photoresist are then removed by a first etching process. A patterned gate insulating layer and a patterned etching stop layer are then formed through a second etching process. The first conductive layer uncovered by the patterned gate insulating layer is then removed to form a gate electrode. The semiconductor layer uncovered by the patterned etching stop layer is then removed to form a patterned semiconductor layer and partially expose the patterned gate insulating layer.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: March 18, 2014
    Assignee: AU Optronics Corp.
    Inventors: Hui-Ling Ku, Chia-Yu Chen, Yi-Chen Chung, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Patent number: 8541779
    Abstract: A pixel structure of an organic electroluminescence apparatus includes at least an active device connected to a scan line and a data line, a first electrode, a dielectric material layer, a first isolating layer, a second isolating layer, an organic light-emitting material layer and a second electrode. The dielectric material layer is disposed on the first electrode and has a first opening to expose the first electrode. The first isolating layer disposed on the dielectric material layer includes an oxide semiconductor material and has a second opening to expose the first electrode. The second isolating layer is disposed on the first isolating layer and has a third opening to expose the first electrode in the first opening and the first isolating layer in a sidewall of the second opening. The organic light-emitting material layer is in the third opening. The second electrode is on the organic light-emitting layer.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: September 24, 2013
    Assignee: Au Optronics Corporation
    Inventors: Hong-Syu Chen, Shou-Wei Fang, Jen-Yu Lee, Tsung-Hsiang Shih, Hsueh-Hsing Lu, Chia-Yu Chen
  • Publication number: 20130134425
    Abstract: A manufacturing method of an array substrate includes the following steps. A gate electrode and a gate insulator layer are successively formed on a substrate. A semiconductor layer, an etching stop layer, a hard mask layer, and a second patterned photoresist are successively formed on the gate insulator layer. The second patterned photoresist is employed for performing an over etching process to the hard mask layer to form a patterned hard mask layer. The second patterned photoresist is employed for performing a first etching process to the etching stop layer. The second patterned photoresist is then employed for performing a second etching process to the semiconductor layer to form a patterned semiconductor layer. The etching stop layer uncovered by the patterned hard mask layer is then removed for forming a patterned etching stop layer.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 30, 2013
    Applicant: AU OPTRONICS CORP.
    Inventors: Yi-Chen Chung, Chia-Yu Chen, Hui-Ling Ku, Yu-Hung Chen, Chi-Wei Chou, Fan-Wei Chang, Hsueh-Hsing Lu, Hung-Che Ting
  • Publication number: 20110193089
    Abstract: A pixel structure including a substrate, a gate, an insulation layer, a metal oxide semiconductor (MOS) layer, a source and a drain, at least one film layer, and a first electrode layer is provided. The gate is disposed on the substrate. The insulation layer covers the gate. The MOS layer is disposed on the insulation layer above the gate. The source and the drain are disposed on the MOS layer. The film layer covers the MOS layer and includes a transparent photocatalytic material, wherein the transparent photocatalytic material blocks ultraviolet light from reaching the MOS layer. The first electrode layer is electrically connected to the source or the drain.
    Type: Application
    Filed: April 1, 2010
    Publication date: August 11, 2011
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Cheng-Wei Chou, Hsueh-Hsing Lu, Hung-Che Ting, Tsung-Hsiang Shih, Chia-Yu Chen