Patents by Inventor Hua-Chiang Huang

Hua-Chiang Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8674673
    Abstract: A switching power converter including an upper-bridge switch, a lower-bridge switch, an impedance circuit, a first control circuit, a second control circuit and a logic circuit is provided. The impedance circuit generates an output voltage and a sensing current according to a conductive state of the upper-bridge switch and the lower-bridge switch. The first control circuit generates a first pulse signal according to the output voltage. The second control circuit has a first mode and a second mode for generating a second pulse signal and a third pulse signal individually. Furthermore, the second control circuit uses different threshold values in different modes to determine whether to switch the mode thereof, so as to form a hysteretic effect in mode switching. The logic circuit controls the upper-bridge switch by the first pulse signal, and controls the lower-bridge switch by the second pulse signal or the third pulse signal.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: March 18, 2014
    Assignee: uPI Semiconductor Corp.
    Inventors: Shih-Chieh Hung, Hua-Chiang Huang, Jiun-Chiang Chen
  • Publication number: 20130335046
    Abstract: A DC-DC controller and an operation method thereof are provided. The DC-DC controller is configured to connect an output stage. The DC-DC controller includes a pulse width modulation (PWM) calculation circuit, a load transient detection circuit, and an override time calculation circuit. The PWM calculation circuit provides a PWM signal to the output stage. The load transient detection circuit receives an input signal related to an output voltage of the output stage. The load transient detection circuit provides a control signal according to the input signal and a predetermined input signal. The override time calculation circuit provides an override control signal with a predetermined time to the PWM calculation circuit according to the control signal. The PWM calculation circuit adjusts a duty cycle of the PWM signal according to the override control signal.
    Type: Application
    Filed: September 14, 2012
    Publication date: December 19, 2013
    Applicant: UPI SEMICONDUCTOR CORP.
    Inventor: Hua-Chiang Huang
  • Publication number: 20130200864
    Abstract: A DC-DC converter and a voltage conversion method thereof are provided. The DC-DC converter includes an output unit, a control unit and a trigger unit. The output unit converts an input voltage into an output voltage. The control unit generates a control signal according to the input voltage, an output feedback voltage related to the output voltage and a reference voltage, so as to make the output unit generate the output voltage. The trigger unit generates a first trigger signal according to the control signal, the output feedback voltage and the reference voltage. When the output feedback voltage is less than the reference voltage by a preset voltage, the control unit controls the output unit to perform a voltage-regulating process to the output voltage in advance.
    Type: Application
    Filed: September 14, 2012
    Publication date: August 8, 2013
    Applicant: uPI Semiconductor Corp
    Inventors: Hua-Chiang Huang, Jiun-Chiang Chen, Wei-Ling Chen
  • Publication number: 20130027012
    Abstract: A DC-DC converter is provided. When a load of the DC-DC converter is too light, the DC-DC converter can raise a frequency of its PWM signal, and reduce a pulse width of the PWM signal, so as to avoid the frequency of the PWM signal falling into a frequency range that can heard by human's ear and maintain high conversion efficiency of the DC-DC converter.
    Type: Application
    Filed: July 4, 2012
    Publication date: January 31, 2013
    Applicant: UPI SEMICONDUCTOR CORP.
    Inventor: Hua-Chiang Huang
  • Patent number: 8350545
    Abstract: A current balancer suitable for a multi-phase power converting device is provided. The current balancer includes an error detection unit and a plurality of pulse control units. Each of the pulse control units includes a current-to-voltage converter, a charging and discharging controller, a capacitor, and a comparator. The error detection unit detects a plurality of channel currents generated by the multi-phase power converting device, and generates a plurality of error currents by calculating. The charging and discharging controller provides a charging voltage or a discharging voltage according to a constant pulse-width modulation (PWM) signal. When the channel currents are balanced, the comparator generates a PWM signal with a constant duty cycle. When the channel currents are not balanced, an error voltage generated by the current-to-voltage converter is used to adjust a voltage level of the charging voltage or the discharging voltage, so that the PWM signal is varied correspondingly.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: January 8, 2013
    Assignee: uPI Semiconductor Corp.
    Inventors: Hua-Chiang Huang, Chih-Lien Chang, Han-Pang Wang
  • Publication number: 20120126775
    Abstract: A switching power converter including an upper-bridge switch, a lower-bridge switch, an impedance circuit, a first control circuit, a second control circuit and a logic circuit is provided. The impedance circuit generates an output voltage and a sensing current according to a conductive state of the upper-bridge switch and the lower-bridge switch. The first control circuit generates a first pulse signal according to the output voltage. The second control circuit has a first mode and a second mode for generating a second pulse signal and a third pulse signal individually. Furthermore, the second control circuit uses different threshold values in different modes to determine whether to switch the mode thereof, so as to form a hysteretic effect in mode switching. The logic circuit controls the upper-bridge switch by the first pulse signal, and controls the lower-bridge switch by the second pulse signal or the third pulse signal.
    Type: Application
    Filed: February 7, 2011
    Publication date: May 24, 2012
    Applicant: UPI SEMICONDUCTOR CORP.
    Inventors: Shih-Chieh Hung, Hua-Chiang Huang, Jiun-Chiang Chen
  • Publication number: 20120049813
    Abstract: A current balancer suitable for a multi-phase power converting device is provided. The current balancer includes an error detection unit and a plurality of pulse control units. Each of the pulse control units includes a current-to-voltage converter, a charging and discharging controller, a capacitor, and a comparator. The error detection unit detects a plurality of channel currents generated by the multi-phase power converting device, and generates a plurality of error currents by calculating. The charging and discharging controller provides a charging voltage or a discharging voltage according to a constant pulse-width modulation (PWM) signal. When the channel currents are balanced, the comparator generates a PWM signal with a constant duty cycle. When the channel currents are not balanced, an error voltage generated by the current-to-voltage converter is used to adjust a voltage level of the charging voltage or the discharging voltage, so that the PWM signal is varied correspondingly.
    Type: Application
    Filed: December 22, 2010
    Publication date: March 1, 2012
    Applicant: uPI Semiconductor Corp.
    Inventors: Hua-Chiang Huang, Chih-Lien Chang, Han-Pang Wang
  • Publication number: 20110316503
    Abstract: A multi-phase DC-DC controller. The multi-phase DC-DC controller comprises converter channels, a channel control device and a power control device. Each converter channel comprises a switch device, a first output node and an inductor coupled between the switch device and the first output node. The channel control device generates adjusted pulse width modulation signals according to control signals of the converter channels to respectively control operation of the switch device in each converter channel. The power control device generates the control signals according to sensed currents in the converter channels so as to dynamically turn on or off each converter channel according to the sensed currents.
    Type: Application
    Filed: September 2, 2011
    Publication date: December 29, 2011
    Applicant: UPI SEMICONDUCTOR CORPORATION
    Inventor: Hua-Chiang Huang
  • Patent number: 8058856
    Abstract: A multi-phase DC-DC converter is provided. A plurality of switching sets are coupled to an output, wherein each switching set includes a phase node. A plurality of inductors are separately coupled between the phase nodes and the output. A sense circuit has a plurality of sense units separately coupled to the phase nodes, each sensing a signal from the corresponding phase node and generating a sensing signal. A PWM generator includes a plurality of subtracting units, each subtracting a first signal from one of the sensing signals to generate a difference signal, wherein the first signal is generated by summing each of the sensing signals divided by a predetermined value except for the one of the sensing signals. The PWM generator generates a plurality of PWM signals to balance the currents of the inductors according to the difference signals.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: November 15, 2011
    Assignee: UPI Semiconductor Corporation
    Inventor: Hua-Chiang Huang
  • Patent number: 8030908
    Abstract: A multi-phase DC-DC controller. The multi-phase DC-DC controller comprises converter channels, a channel control device and a power control device. Each converter channel comprises a switch device, a first output node and an inductor coupled between the switch device and the first output node. The channel control device generates adjusted pulse width modulation signals according to control signals of the converter channels to respectively control operation of the switch device in each converter channel. The power control device generates the control signals according to sensed currents in the converter channels so as to dynamically turn on or off each converter channel according to the sensed currents.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: October 4, 2011
    Assignee: UPI Semiconductor Corporation
    Inventor: Hua-Chiang Huang
  • Patent number: 7928704
    Abstract: A droop circuit of a DC-DC converter is provided, wherein the DC-DC converter includes an output inductor coupled between an output of the DC-DC converter and a phase node for providing an output voltage. A current sense device is coupled between the phase node and the output of the DC-DC converter, includes an inductor coupled to the phase node and senses a current from the phase node. A first resistor is coupled to the current sense device. An amplifier circuit includes an amplifier having an inverting input, a non-inverting input coupled to the first resistor and an output directly connected to the inverting input, and a second resistor coupled between the inverting input and the output of the DC-DC converter. The amplifier circuit provides a droop current according to the second resistor and a voltage difference between the non-inverting input and the output of the DC-DC converter, and the voltage difference is related to the current.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: April 19, 2011
    Assignee: UPI Semiconductor Corporation
    Inventor: Hua-Chiang Huang
  • Patent number: 7923977
    Abstract: A DC-DC converter used to convert an input voltage to an output voltage is disclosed. The DC-DC converter comprises a pulse-width-modulation (PWM) generator, a transient boost circuit, a logic circuit, a switching device, and a buck circuit. The pulse-width-modulation (PWM) generator generates a PWM signal according to the output voltage. The transient boost circuit generates an adjusting signal according to the variation of the output voltage. The logic circuit generates a switch signal according to the PWM signal and the adjusting signal. The switching signal is at a high level when the PWM signal or the adjusting signal is at the high level, and the switching signal is at a low level when the PWM signal and the adjusting signal are at the low level. The switching device converts the input voltage to a driving signal according to the switching signal. The buck circuit receives the driving signal to generate the output voltage.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: April 12, 2011
    Assignee: UPI Semiconductor Corporation
    Inventor: Hua-Chiang Huang
  • Publication number: 20090153114
    Abstract: A DC-DC converter used to convert an input voltage to an output voltage is disclosed. The DC-DC converter comprises a pulse-width-modulation (PWM) generator, a transient boost circuit, a logic circuit, a switching device, and a buck circuit. The pulse-width-modulation (PWM) generator generates a PWM signal according to the output voltage. The transient boost circuit generates an adjusting signal according to the variation of the output voltage. The logic circuit generates a switch signal according to the PWM signal and the adjusting signal. The switching signal is at a high level when the PWM signal or the adjusting signal is at the high level, and the switching signal is at a low level when the PWM signal and the adjusting signal are at the low level. The switching device converts the input voltage to a driving signal according to the switching signal. The buck circuit receives the driving signal to generate the output voltage.
    Type: Application
    Filed: April 30, 2008
    Publication date: June 18, 2009
    Inventor: Hua-Chiang Huang
  • Publication number: 20090153110
    Abstract: A multi-phase DC-DC controller. The multi-phase DC-DC controller comprises converter channels, a channel control device and a power control device. Each converter channel comprises a switch device, a first output node and an inductor coupled between the switch device and the first output node. The channel control device generates adjusted pulse width modulation signals according to control signals of the converter channels to respectively control operation of the switch device in each converter channel. The power control device generates the control signals according to sensed currents in the converter channels so as to dynamically turn on or off each converter channel according to the sensed currents.
    Type: Application
    Filed: May 23, 2008
    Publication date: June 18, 2009
    Inventor: Hua-Chiang Huang
  • Publication number: 20090051335
    Abstract: A multi-phase DC-DC converter is provided. A plurality of switching sets are coupled to an output, wherein each switching set includes a phase node. A plurality of inductors are separately coupled between the phase nodes and the output. A sense circuit has a plurality of sense units separately coupled to the phase nodes, each sensing a signal from the corresponding phase node and generating a sensing signal. A PWM generator includes a plurality of subtracting units, each subtracting a first signal from one of the sensing signals to generate a difference signal, wherein the first signal is generated by summing each of the sensing signals divided by a predetermined value except for the one of the sensing signals. The PWM generator generates a plurality of PWM signals to balance the currents of the inductors according to the difference signals.
    Type: Application
    Filed: May 14, 2008
    Publication date: February 26, 2009
    Inventor: Hua-Chiang Huang
  • Publication number: 20090051334
    Abstract: A droop circuit of a DC-DC converter is provided, wherein the DC-DC converter includes an output inductor coupled between an output of the DC-DC converter and a phase node for providing an output voltage. A current sense device is coupled between the phase node and the output of the DC-DC converter, includes an inductor coupled to the phase node and senses a current from the phase node. A first resistor is coupled to the current sense device. An amplifier circuit includes an amplifier having an inverting input, a non-inverting input coupled to the first resistor and an output directly connected to the inverting input, and a second resistor coupled between the inverting input and the output of the DC-DC converter. The amplifier circuit provides a droop current according to the second resistor and a voltage difference between the non-inverting input and the output of the DC-DC converter, and the voltage difference is related to the current.
    Type: Application
    Filed: April 18, 2008
    Publication date: February 26, 2009
    Inventor: Hua-Chiang Huang