Patents by Inventor Hua Chu

Hua Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210051298
    Abstract: Embodiments of the disclosure provided herein can be used to improve the control, selection and transmission of data to a remote video conferencing environment, by use of a plurality of wired or wirelessly connected electronic devices. In one example, the transmission of data from a local environment can be improved by switching the source of visual inputs (e.g., cameras or display of an electronic device, such as laptop) and/or audio inputs (e.g., microphones) to the one or more appropriate visual and audio sources available within the local environment. The most appropriate visual and audio sources can be the sources that provide the participants in the remote environment the most relevant data giving the remote users the best understanding of the current activities in the local environment.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 18, 2021
    Inventors: Andreas Franz William ATKINS, Joseph Yao-Hua CHU, Henry LEVAK, Kevin MCLINTOCK
  • Publication number: 20210047176
    Abstract: Various embodiments of the present disclosure are directed towards a microphone including a support structure layer disposed between a particle filter and a microelectromechanical systems (MEMS) structure. A carrier substrate is disposed below the particle filter and has opposing sidewalls that define a carrier substrate opening. The MEMS structure overlies the carrier substrate and includes a diaphragm having opposing sidewalls that define a diaphragm opening overlying the carrier substrate opening. The particle filter is disposed between the carrier substrate and the MEMS structure. A plurality of filter openings extend through the particle filter. The support structure layer includes a support structure having one or more segments spaced laterally between the opposing sidewalls of the carrier substrate. The one or more segments of the support structure are spaced laterally between the plurality of filter openings.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 18, 2021
    Inventors: Chun-Wen Cheng, Chia-Hua Chu, Wen Cheng Kuo
  • Publication number: 20210051037
    Abstract: Embodiments of the disclosure provided herein can be used to improve the control, selection and transmission of data to a remote video conferencing environment, by use of a plurality of wired or wirelessly connected electronic devices. In one example, the transmission of data from a local environment can be improved by switching the source of visual inputs (e.g., cameras or display of an electronic device, such as laptop) and/or audio inputs (e.g., microphones) to the one or more appropriate visual and audio sources available within the local environment. The most appropriate visual and audio sources can be the sources that provide the participants in the remote environment the most relevant data giving the remote users the best understanding of the current activities in the local environment.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 18, 2021
    Inventors: Andreas Franz William ATKINS, Joseph Yao-Hua CHU, Henry LEVAK, Kevin MCLINTOCK
  • Publication number: 20210047175
    Abstract: Various embodiments of the present disclosure are directed towards a microphone including a particle filter disposed between a microelectromechanical systems (MEMS) substrate and a carrier substrate. A MEMS device structure overlies the MEMS substrate. The MEMS device structure includes a diaphragm having opposing sidewalls that define a diaphragm opening. The carrier substrate underlies the MEMS substrate. The carrier substrate has opposing sidewalls that define a carrier substrate opening underlying the diaphragm opening. A filter stack is sandwiched between the carrier substrate and the MEMS substrate. The filter stack includes an upper dielectric layer, a lower dielectric layer, and a particle filter layer disposed between the upper and lower dielectric layers. The particle filter layer includes the particle filter spaced laterally between the opposing sidewalls of the carrier substrate.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 18, 2021
    Inventors: Chia-Hua Chu, Chun-Wen Cheng, Wen Cheng Kuo
  • Publication number: 20210051036
    Abstract: Embodiments of the disclosure provided herein can be used to improve the control, selection and transmission of data to a remote video conferencing environment, by use of a plurality of wired or wirelessly connected electronic devices. In one example, the transmission of data from a local environment can be improved by switching the source of visual inputs (e.g., cameras or display of an electronic device, such as laptop) and/or audio inputs (e.g., microphones) to the one or more appropriate visual and audio sources available within the local environment. The most appropriate visual and audio sources can be the sources that provide the participants in the remote environment the most relevant data giving the remote users the best understanding of the current activities in the local environment.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 18, 2021
    Inventors: Andreas Franz William ATKINS, Joseph Yao-Hua CHU, Henry LEVAK, Kevin MCLINTOCK
  • Patent number: 10902980
    Abstract: An over-current protection device comprises first and second electrode layers and a PTC material layer laminated therebetween. The PTC material layer comprises a polymer, an electrically conductive filler and a metal compound filler. The PTC material layer comprises the polymer of 50-70% by volume, and the electrically conductive filler and the metal compound filler are distributed in the polymer. The metal compound filler has a particle size D50 of 2-15 ?m and 5-20% by volume and is selected from the group consisting of aluminum nitride, aluminum hydroxide, aluminum oxide, titanium oxide and zirconium oxide. The over-current protection device has a resistivity of 0.7-1.2 ?·cm.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: January 26, 2021
    Assignee: POLYTRONICS TECHNOLOGY CORP.
    Inventors: Zhen-Yu Dong, Yung-Hsien Chang, Hsiu-Che Yen, Yao-Te Chang, Fu-Hua Chu
  • Publication number: 20210017658
    Abstract: An electrolytic reactor of an oxyhydrogen machine includes a main body with an internal chamber for accommodating a liquid, a carrier installed to the chamber for arranging even numbered electrode plates which are spaced from each other and two adjacent electrode plates having different polarities, a multiple of partitions extending to an appropriate length from the top surface to the bottom surface of the main body and spaced from each other, a communicating channel formed by each electrode plate and the main body and disposed between the bottom surface of the main body and each electrode plate, a liquid storage portion formed by the space between the partitions and the chamber and communicated to the communicating channel and a gas extraction unit installed on the main body and having independent first and second gas collection chambers for collecting hydrogen and oxygen respectively.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 21, 2021
    Inventors: XIN LI, HUNG YUEH LO, YU HUA CHU
  • Patent number: 10895561
    Abstract: An embedding sensor module includes a cylinder and at least one flake sensor. A fluid tank is surrounded by the cylinder. The cylinder has a plurality of orifice connected to the fluid tank. The flake sensor is embedded in the fluid tank.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: January 19, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jung-Hao Wang, Che-Hsin Lin, Wei-Sin Kao, Pai-Hao Wu, Chen-Hua Chu, Cheng-Hung San
  • Patent number: 10884462
    Abstract: A computer casing includes a housing, a retaining structure, a lock plate, and an elastic element. The retaining structure is disposed in the housing. The lock plate is movably disposed on the retaining structure. The elastic element is disposed on the lock plate, and applies an elastic force to the retaining structure to retain the lock plate in a burglar-proof position or a storage position.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: January 5, 2021
    Assignee: WISTRON CORP.
    Inventors: Chia Hua Chu, Chih Peng Chen
  • Publication number: 20200413210
    Abstract: The present disclosure provides one embodiment of an integrated microphone structure. The integrated microphone structure includes a first silicon substrate patterned as a first plate. A silicon oxide layer formed on one side of the first silicon substrate. A second silicon substrate bonded to the first substrate through the silicon oxide layer such that the silicon oxide layer is sandwiched between the first and second silicon substrates. A diaphragm secured on the silicon oxide layer and disposed between the first and second silicon substrates such that the first plate and the diaphragm are configured to form a capacitive microphone.
    Type: Application
    Filed: September 14, 2020
    Publication date: December 31, 2020
    Inventors: Jung-Huei Peng, Chia-Hua Chu, Chun-Wen Cheng, Chin-Yi Cho, Li-Min Hung, Yao-Te Huang
  • Patent number: 10865099
    Abstract: A MEMS device includes a first layer and a second layer including a same material, a third layer disposed between the first layer and the second layer, a first air gap separating the first layer and the third layer, a second air gap separating the second layer and the third layer, a plurality of first pillars exposed to the first air gap and arranged in contact with the first layer and the third layer, a plurality of second pillars exposed to the second air gap and arranged in contact with the second layer and the third layer.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chen Hsiung Yang, Chun-Wen Cheng, Chia-Hua Chu, En-Chan Chen
  • Publication number: 20200386379
    Abstract: The present disclosure provides intelligent lighting control systems. The lighting control system apparatuses include a light control module configured to be coupled to a luminaire electrically coupled to a light bulb comprising a capacitor. The lighting control module comprises a controller configured to temporarily close a circuit comprising a load wire configured to connect an AC power source to the capacitor through the luminaire, whereby electricity flowing through the load wire flows through the capacitor in the light bulb and charges an energy storage device in the lighting control module electrically coupled to the load wire. The controller is configured to after temporarily closing the circuit, re-open the circuit prior to the capacitor fully charging, so as to prevent a light emitting element of the light bulb electrically coupled to the capacitor from illuminating.
    Type: Application
    Filed: October 25, 2018
    Publication date: December 10, 2020
    Inventor: Joseph Yoa Hua Chu
  • Patent number: 10850976
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip including an epitaxial layer overlying a microelectromechanical systems (MEMS) substrate. The method includes bonding a MEMS substrate to a carrier substrate, the MEMS substrate includes monocrystalline silicon. An epitaxial layer is formed over the MEMS substrate, the epitaxial layer has a higher doping concentration than the MEMS substrate. A plurality of contacts are formed over the epitaxial layer, the plurality of contacts respectively form ohmic contacts with the epitaxial layer.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: December 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuei-Sung Chang, Chia-Hua Chu, Shang-Ying Tsai
  • Publication number: 20200361767
    Abstract: The present disclosure relates to a method of forming an integrated chip structure. The method includes forming a plurality of interconnect layers within a dielectric structure over a substrate. A dielectric layer arranged along a top of the dielectric structure is patterned to define a via hole exposing an uppermost one of the plurality of interconnect layers. An extension via is formed within the via hole and one or more conductive materials are formed over the dielectric layer and the extension via. The one or more conductive materials are patterned to define a sensing electrode over and electrically coupled to the extension via. A microelectromechanical systems (MEMS) substrate is bonded to the substrate. The MEMs substrate is vertically separated from the sensing electrode.
    Type: Application
    Filed: July 31, 2020
    Publication date: November 19, 2020
    Inventors: Yu-Chia Liu, Chia-Hua Chu, Chun-Wen Cheng, Jung-Huei Peng
  • Publication number: 20200352004
    Abstract: The present disclosure provides an intelligent lighting control system. A controller of the lighting control system causes a phase change cut to be applied to an AC power signal to signal to a light bulb apparatus connected to a luminaire a request to self identify. The encoded phase changed AC power signal is transmitted to the light bulb apparatus for a predetermined time period. A response signal received from the light bulb in response to receipt of the encoded phase changed AC power signal by the light bulb is detected at the lighting control system. A bulb identification is determined based on the response signal from the light bulb apparatus.
    Type: Application
    Filed: October 25, 2018
    Publication date: November 5, 2020
    Inventor: Joseph Yao Hua Chu
  • Publication number: 20200346925
    Abstract: An integrated circuit (IC) with an integrated microelectromechanical systems (MEMS) structure is provided. In some embodiments, the IC comprises a semiconductor substrate, a back-end-of-line (BEOL) interconnect structure, the integrated MEMS structure, and a cavity. The BEOL interconnect structure is over the semiconductor substrate, and comprises wiring layers stacked in a dielectric region. Further, an upper surface of the BEOL interconnect structure is planar or substantially planar. The integrated MEMS structure overlies and directly contacts the upper surface of the BEOL interconnect structure, and comprises an electrode layer. The cavity is under the upper surface of the BEOL interconnect structure, between the MEMS structure and the BEOL interconnect structure.
    Type: Application
    Filed: July 21, 2020
    Publication date: November 5, 2020
    Inventors: Chun-Wen Cheng, Chia-Hua Chu
  • Patent number: 10802070
    Abstract: A testing device includes a switch, a sensing circuit, and a control circuit. The switch is coupled to a power supply circuit, and the power supply circuit is configured to output a supply voltage to a device under-test via the switch. The sensing circuit is coupled to the device under-test, and the sensing circuit is configured to receive an input voltage from the device under-test and to output a sensing signal according to the input voltage. The control circuit is coupled to the sensing circuit, the power supply circuit, and the switch. The control circuit is configured to control the power supply circuit to stop outputting the supply voltage at a first time and to turn off the switch at a second time according to the sensing signal.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: October 13, 2020
    Assignee: CHROMA ATE INC.
    Inventors: Ching-Hua Chu, Cheng-Hsien Chang
  • Publication number: 20200323059
    Abstract: The present disclosure provides intelligent lighting control systems. The light control systems include light bulb apparatuses including a receiver for receiving an encoded alternating current (AC) power signal transmitted from a lighting control system to a luminaire electrically coupled to the light bulb apparatuses, a signal transformer for converting an input signal, a light emitting element coupled to the signal transformer, and a controller communicably coupled to the signal transformer.
    Type: Application
    Filed: October 25, 2018
    Publication date: October 8, 2020
    Inventor: Joseph Yao Hua Chu
  • Publication number: 20200317506
    Abstract: Representative methods for sealing MEMS devices include depositing insulating material over a substrate, forming conductive vias in a first set of layers of the insulating material, and forming metal structures in a second set of layers of the insulating material. The first and second sets of layers are interleaved in alternation. A dummy insulating layer is provided as an upper-most layer of the first set of layers. Portions of the first and second set of layers are etched to form void regions in the insulating material. A conductive pad is formed on and in a top surface of the insulating material. The void regions are sealed with an encapsulating structure. At least a portion of the encapsulating structure is laterally adjacent the dummy insulating layer, and above a top surface of the conductive pad. An etch is performed to remove at least a portion of the dummy insulating layer.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Inventors: Yu-Chia Liu, Chia-Hua Chu, Chun-Wen Cheng
  • Publication number: 20200322733
    Abstract: AMEMS microphone includes a backplate that has a plurality of open areas, and a diaphragm spaced apart from the backplate. The diaphragm is deformable by sound waves to cause gaps between the backplate and the diaphragm being changed at multiple locations on the diaphragm. The diaphragm includes a plurality of anchor areas, located near a boundary of the diaphragm, which is fixed relative to the backplate. The diaphragm also includes multiple vent valves. Examples of the vent valve include a wing vent valve and a vortex vent valve.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Inventors: Chun-Wen Cheng, Chia-Hua Chu, Chun Yin Tsai