Patents by Inventor Hua-Shu Ivan Wu

Hua-Shu Ivan Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10961118
    Abstract: The present disclosure relates to a micro-electro mechanical system (MEMS) package and a method of achieving differential pressure adjustment in multiple MEMS cavities at a wafer-to-wafer bonding level. In some embodiments, a ventilation trench and an isolation trench are concurrently within a capping substrate. The isolation trench isolates a silicon region and has a height substantially equal to a height of the ventilation trench. A sealing structure is formed within the ventilation trench and the isolation trench, the sealing structure filing the isolation trench and defining a vent within the ventilation trench. A device substrate is provided and bonded to the capping substrate at a first gas pressure and hermetically sealing a first cavity associated with a first MEMS device and a second cavity associated with a second MEMS device. The capping substrate is thinned to open the vent to adjust a gas pressure of the second cavity.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: March 30, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Chia Lee, Chin-Min Lin, Cheng San Chou, Hsiang-Fu Chen, Wen-Chuan Tai, Ching-Kai Shen, Hua-Shu Ivan Wu, Fan Hu
  • Patent number: 10899608
    Abstract: The present disclosure relates to a micro-electro mechanical system (MEMS) package and a method of achieving differential pressure adjustment in multiple MEMS cavities at a wafer-to-wafer bonding level. A device substrate comprising first and second MEMS devices is bonded to a capping substrate comprising first and second recessed regions. A ventilation trench is laterally spaced apart from the recessed regions and within the second cavity. A sealing structure is arranged within the ventilation trench and defines a vent in fluid communication with the second cavity. A cap is arranged within the vent to seal the second cavity at a second gas pressure that is different than a first gas pressure of the first cavity.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: January 26, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Chia Lee, Chin-Min Lin, Cheng San Chou, Hsiang-Fu Chen, Wen-Chuan Tai, Ching-Kai Shen, Hua-Shu Ivan Wu, Fan Hu
  • Patent number: 10556792
    Abstract: The present disclosure relates to a micro-electro mechanical system (MEMS) package and a method of achieving differential pressure adjustment in multiple MEMS cavities at a wafer-to-wafer bonding level. A device substrate comprising first and second MEMS devices is bonded to a capping substrate comprising first and second recessed regions. A ventilation trench is laterally spaced apart from the recessed regions and within the second cavity. A sealing structure is arranged within the ventilation trench and defines a vent in fluid communication with the second cavity. A cap is arranged within the vent to seal the second cavity at a second gas pressure that is different than a first gas pressure of the first cavity.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: February 11, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Chia Lee, Chin-Min Lin, Cheng San Chou, Hsiang-Fu Chen, Wen-Chuan Tai, Ching-Kai Shen, Hua-Shu Ivan Wu, Fan Hu
  • Publication number: 20200024137
    Abstract: The present disclosure relates to a micro-electro mechanical system (MEMS) package and a method of achieving differential pressure adjustment in multiple MEMS cavities at a wafer-to-wafer bonding level. In some embodiments, a ventilation trench and an isolation trench are concurrently within a capping substrate. The isolation trench isolates a silicon region and has a height substantially equal to a height of the ventilation trench. A sealing structure is formed within the ventilation trench and the isolation trench, the sealing structure filing the isolation trench and defining a vent within the ventilation trench. A device substrate is provided and bonded to the capping substrate at a first gas pressure and hermetically sealing a first cavity associated with a first MEMS device and a second cavity associated with a second MEMS device. The capping substrate is thinned to open the vent to adjust a gas pressure of the second cavity.
    Type: Application
    Filed: September 26, 2019
    Publication date: January 23, 2020
    Inventors: Yi-Chia Lee, Chin-Min Lin, Cheng San Chou, Hsiang-Fu Chen, Wen-Chuan Tai, Ching-Kai Shen, Hua-Shu Ivan Wu, Fan Hu
  • Publication number: 20200024136
    Abstract: The present disclosure relates to a micro-electro mechanical system (MEMS) package and a method of achieving differential pressure adjustment in multiple MEMS cavities at a wafer-to-wafer bonding level. A device substrate comprising first and second MEMS devices is bonded to a capping substrate comprising first and second recessed regions. A ventilation trench is laterally spaced apart from the recessed regions and within the second cavity. A sealing structure is arranged within the ventilation trench and defines a vent in fluid communication with the second cavity. A cap is arranged within the vent to seal the second cavity at a second gas pressure that is different than a first gas pressure of the first cavity.
    Type: Application
    Filed: September 26, 2019
    Publication date: January 23, 2020
    Inventors: Yi-Chia Lee, Chin-Min Lin, Cheng San Chou, Hsiang-Fu Chen, Wen-Chuan Tai, Ching-Kai Shen, Hua-Shu Ivan Wu, Fan Hu
  • Publication number: 20190161346
    Abstract: The present disclosure relates to a micro-electro mechanical system (MEMS) package and a method of achieving differential pressure adjustment in multiple MEMS cavities at a wafer-to-wafer bonding level. A device substrate comprising first and second MEMS devices is bonded to a capping substrate comprising first and second recessed regions. A ventilation trench is laterally spaced apart from the recessed regions and within the second cavity. A sealing structure is arranged within the ventilation trench and defines a vent in fluid communication with the second cavity. A cap is arranged within the vent to seal the second cavity at a second gas pressure that is different than a first gas pressure of the first cavity.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 30, 2019
    Inventors: Yi-Chia Lee, Chin-Min Lin, Cheng San Chou, Hsiang-Fu Chen, Wen-Chuan Tai, Ching-Kai Shen, Hua-Shu Ivan Wu, Fan Hu