Patents by Inventor Hua Tse Timothy Cheng

Hua Tse Timothy Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220365067
    Abstract: Diseases (e.g., cancer) of a particular organ can be detected by analyzing cell-free DNA. Some embodiments may use an organ-associated sample that is from a particular organ or passes through the particular organ, as may occur, for example, in urine, saliva, blood, and stool samples. In some embodiments, methylation levels of cell-free DNA can be measured in a sample. Tissue-specific methylation patterns can be used to determine fractional contributions from different tissue types. In other embodiments, sizes of organ-associated cell-free DNA can be measured. A statistical measure of the size profile may indicate that cell-free DNA fragments are collectively longer than expected for subjects with healthy tissue compared to non-healthy tissue. In other embodiments, two different samples can be analyzed to determine whether a particular organ has cancer. Cell-free DNA in a blood sample and organ-associated sample can both be analyzed to identify chromosomal regions exhibiting a copy number aberration.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 17, 2022
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Hua Tse Timothy Cheng
  • Patent number: 11435339
    Abstract: Diseases (e.g., cancer) of a particular organ can be detected by analyzing cell-free DNA. Some embodiments may use an organ-associated sample that is from a particular organ or passes through the particular organ, as may occur, for example, in urine, saliva, blood, and stool samples. In some embodiments, methylation levels of cell-free DNA can be measured in a sample. Tissue-specific methylation patterns can be used to determine fractional contributions from different tissue types. In other embodiments, sizes of organ-associated cell-free DNA can be measured. A statistical measure of the size profile may indicate that cell-free DNA fragments are collectively longer than expected for subjects with healthy tissue compared to non-healthy tissue. In other embodiments, two different samples can be analyzed to determine whether a particular organ has cancer. Cell-free DNA in a blood sample and organ-associated sample can both be analyzed to identify chromosomal regions exhibiting a copy number aberration.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: September 6, 2022
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Hua Tse Timothy Cheng
  • Publication number: 20180149636
    Abstract: Diseases (e.g., cancer) of a particular organ can be detected by analyzing cell-free DNA. Some embodiments may use an organ-associated sample that is from a particular organ or passes through the particular organ, as may occur, for example, in urine, saliva, blood, and stool samples. In some embodiments, methylation levels of cell-free DNA can be measured in a sample. Tissue-specific methylation patterns can be used to determine fractional contributions from different tissue types. In other embodiments, sizes of organ-associated cell-free DNA can be measured. A statistical measure of the size profile may indicate that cell-free DNA fragments are collectively longer than expected for subjects with healthy tissue compared to non-healthy tissue. In other embodiments, two different samples can be analyzed to determine whether a particular organ has cancer. Cell-free DNA in a blood sample and organ-associated sample can both be analyzed to identify chromosomal regions exhibiting a copy number aberration.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 31, 2018
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Kwan Chee Chan, Peiyong Jiang, Hua Tse Timothy Cheng