Patents by Inventor Huabei Jiang
Huabei Jiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9500844Abstract: A lens system for use with photoacoustic microscopy apparatus has a collimated single mode optical fiber to which a toroidal ultrasound transducer is operatively attached. The transducer is located inside a tank. A lens housing is located inside the tank adjacent the transducer and has flexible optically transmissive entrance and exit ports made of polydimethysiloxane. The lens housing is filled with cinnamaldehyde. The cinnamaldehyde can be introduced into the lens housing and withdrawn from it so as to flex its entrance and exit ports, and the tank is filled with a mixture of glycerol and water.Type: GrantFiled: June 5, 2014Date of Patent: November 22, 2016Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.Inventors: Huabei Jiang, Chaolong Song, Lei Xi
-
Patent number: 9256934Abstract: Various embodiments of methods and systems are provided for image reconstruction in photoacoustic tomography. In one embodiment, among others, a method includes obtaining photoacoustic time-domain data; reconstructing an image from the photoacoustic time-domain data using total-variation minimization based photoacoustic tomography reconstruction; and providing the reconstructed image for rendering on a display device. In another embodiment, a system includes a computing device and an image reconstruction program executable in the computing device. The image reconstruction program includes logic that obtains photoacoustic time-domain data; logic that reconstructs an image from the photoacoustic time-domain data using total-variation minimization based photoacoustic tomography reconstruction; and logic that provides the reconstructed image for rendering on a display device.Type: GrantFiled: April 6, 2012Date of Patent: February 9, 2016Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.Inventors: Huabei Jiang, Lei Yao
-
Publication number: 20150355444Abstract: A lens system for use with photoacoustic microscopy apparatus has a collimated single mode optical fiber to which a toroidal ultrasound transducer is operatively attached. The transducer is located inside a tank. A lens housing is located inside the tank adjacent the transducer and has flexible optically transmissive entrance and exit ports made of polydimethysiloxane. The lens housing is filled with cinnamaldehyde. The cinnamaldehyde can be introduced into the lens housing and withdrawn from it so as to flex its entrance and exit ports, and the tank is filled with a mixture of glycerol and water.Type: ApplicationFiled: June 5, 2014Publication date: December 10, 2015Inventors: Huabei Jiang, Chaolong Song, Lei Xi
-
Patent number: 8883124Abstract: Fullerenes, when irradiated with electromagnetic radiation, generate acoustic waves. A photoacoustic tomography method using a material comprising fullerenes is disclosed that includes irradiating the material with a radiation beam such as a laser. The resultant photoacoustic effect produced by the material is detected by at least one detector. A photoacoustic tomography system using a material comprising fullerenes is also described.Type: GrantFiled: October 31, 2008Date of Patent: November 11, 2014Assignee: University of Florida Research Foundation, Inc.Inventors: Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman, Stephen Grobmyer, Iwakuma Nobutaka, Qiang Wang, Qizhi Zhang, Huabei Jiang, Parvesh Sharma, Amit Kumar Singh
-
Publication number: 20140029829Abstract: Various embodiments of methods and systems are provided for image reconstruction in photoacoustic tomography. In one embodiment, among others, a method includes obtaining photoacoustic time-domain data; reconstructing an image from the photoacoustic time-domain data using total-variation m inimization based photoacoustic tomography reconstruction; and providing the reconstructed image for rendering on a display device. In another embodiment, a system includes a computing device and an image reconstruction program executable in the computing device. The image reconstruction program includes logic that obtains photoacoustic time-domain data; logic that reconstructs an image from the photoacoustic time-domain data using total-variation minimization based photoacoustic tomography reconstruction; and logic that provides the reconstructed image for rendering on a display device.Type: ApplicationFiled: April 6, 2012Publication date: January 30, 2014Inventors: Huabei Jiang, Lei Yao
-
Patent number: 8617522Abstract: Multimodal nanoparticles are nanoparticles containing contrast agents for PAT and one or more of luminescence imaging, x-ray imaging, and/or MRI. The multimodal nanoparticles can have a dielectric core comprising an oxide with a metal coating on the core. The particles can be metal speckled. The multimodal nanoparticles can be used for therapeutic purposes such as ablation of tumors or by neutron capture in addition to use as contrast agents for imaging.Type: GrantFiled: December 28, 2012Date of Patent: December 31, 2013Assignee: University of Florida Research Foundation, Inc.Inventors: Parvesh Sharma, Brij M. Moudgil, Glenn A. Walter, Stephen R. Grobmyer, Swadeshmukul Santra, Huabei Jiang, Scott Chang Brown, Edward W. Scott, Qizhi Zhang, Niclas Bengtsson
-
Patent number: 8361437Abstract: Multimodal nanoparticles are nanoparticles containing contrast agents for PAT and one or more of luminescence imaging, x-ray imaging, and/or MRI. The multimodal nanoparticles can have a dielectric core comprising an oxide with a metal coating on the core. The particles can be metal speckled. The multimodal nanoparticles can be used for therapeutic purposes such as ablation of tumors or by neutron capture in addition to use as contrast agents for imaging.Type: GrantFiled: August 28, 2008Date of Patent: January 29, 2013Assignee: University of Florida Research Foundation, Inc.Inventors: Parvesh Sharma, Brij M. Moudgil, Glenn A. Walter, Stephen R. Grobmyer, Swadeshmukul Santra, Huabei Jiang, Scott Chang Brown, Edward W. Scott, Qizhi Zhang, Niclas Bengtsson
-
Publication number: 20110052495Abstract: Fullerenes, when irradiated with electromagnetic radiation, generate acoustic waves. A photoacoustic tomography method using a material comprising fullerenes is disclosed that includes irradiating the material with a radiation beam such as a laser. The resultant photoacoustic effect produced by the material is detected by at least one detector. A photoacoustic tomography system using a material comprising fullerenes is also described.Type: ApplicationFiled: October 31, 2008Publication date: March 3, 2011Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.Inventors: Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman, Stephen Grobmyer, Iwakuma Nobutaka, Qiang Wang, Qizhi Zhang, Huabei Jiang, Parvesh Sharma, Amit Kumar Singh
-
Publication number: 20100254911Abstract: Multimodal nanoparticles are nanoparticles containing contrast agents for PAT and one or more of luminescence imaging, x-ray imaging, and/or MRI. The multimodal nanoparticles can have a dielectric core comprising an oxide with a metal coating on the core. The particles can be metal speckled. The multimodal nanoparticles can be used for therapeutic purposes such as ablation of tumors or by neutron capture in addition to use as contrast agents for imaging.Type: ApplicationFiled: August 28, 2008Publication date: October 7, 2010Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION INC.Inventors: Parvesh Sharma, Brij M. Moudgil, Glenn A. Walter, Stephen R. Grobmyer, Swadeshmukul Santra, Huabei Jiang, Scott Chang Brown, Edward W. Scott, Qizhi Zhang, Niclas Bengtsson
-
Publication number: 20100208965Abstract: Embodiments of the invention pertain to methods for imaging a light absorption coefficient distribution. Embodiments of the subject method can be implemented without knowing the strength of incident light in advance and without requiring careful calibrations in the non-scattering medium. Embodiments of the method can combine conventional photoacoustic tomography (PAT) with diffusing light measurements coupled with an optimization procedure based on the photon diffusion equation. Images of absorbing targets as small as 0.5 mm in diameter embedded in a 50 mm diameter background medium can be quantitatively recovered. Small targets with various optical contrast levels relative to the background can be detected well. Embodiments of the subject reconstruction method can include first obtaining the map of absorbed optical energy density.Type: ApplicationFiled: March 5, 2008Publication date: August 19, 2010Applicant: University of Florida Research Foundation, Inc.Inventors: Huabei Jiang, Zhen Yuan, Qiang Wang, Lu Yin, Qizhi Zhang
-
Patent number: 7725167Abstract: Disclosed is an apparatus and methodology for imaging objects, more particularly radiologically dense objects. The currently disclosed technology has particular applicability in the medical field as a tool and methodology for investigation of radiologically dense breast tissue of young patients by using microwave energy in concert with an ultrasonic initial investigation of the tissue. The use of an ultrasonic initial investigation operates as an initial evaluation point for the subsequent microwave investigation.Type: GrantFiled: July 13, 2005Date of Patent: May 25, 2010Assignee: Clemson UniversityInventors: Razvan M. Ciocan, Huabei Jiang
-
Patent number: 7349731Abstract: The invention provides a means to produce reconstructed refractive index spatial maps that reveal and allow visual separation of normal soft tissue and certain types of tumors. Detector fiber optic bundles positioned on the surface of a soft tissue organ receive and transmit scattered light data, from light in the near-infrared portion of the spectrum delivered to the surface of the organ by separate fiber optic bundles to a computer. Based on an established grid and certain assumed values, the data are analyzed by means of a complex algorithm to produce calculated refractive index values. Through iteration, the values are recalculated to minimize the difference between the observed scattering and calculated values to yield a stable map indicating spatial variation in refractive index and such variation in the form of displayed images indicates the presence of tumors in normal soft tissue.Type: GrantFiled: May 29, 2003Date of Patent: March 25, 2008Assignee: Clemson University Research FoundationInventor: Huabei Jiang
-
Patent number: 7187441Abstract: A system (20) and method are disclosed for the self-calibrating, on-line determination of size distribution f(x) and volume fraction ? of a number of particles (P) dispersed in a medium (M) by detecting one or more propagation characteristics of multiply scattered light from the particles (P). The multiply scattered light is re-emitted in response to exposure to a light source (21) configured to provide light at selected wavelengths. The determination includes calculating the isotropic scattering and absorption coefficients for the particles (P) by comparing the incident and detected light to determine a measurement corresponding to the propagation time through the scattering medium (M), and iteratively estimating the size distribution f(x) and volume fraction ? as a function of the coefficients for each of the wavelengths. An estimation approach based on an expected form of the distribution and the mass of the particles is also disclosed.Type: GrantFiled: November 7, 1997Date of Patent: March 6, 2007Assignee: The Texas A&M University SystemInventors: Eva Sevick-Muraca, Joseph Pierce, Steven Richter, Rajesh Shinde, Ganesh Balgi, Jeffrey Kao, Huabei Jiang
-
Publication number: 20070015993Abstract: Disclosed is an apparatus and methodology for imaging objects, more particularly radiologically dense objects. The currently disclosed technology has particular applicability in the medical field as a tool and methodology for investigation of radiologically dense breast tissue of young patients by using microwave energy in concert with an ultrasonic initial investigation of the tissue. The use of an ultrasonic initial investigation operates as an initial evaluation point for the subsequent microwave investigation.Type: ApplicationFiled: July 13, 2005Publication date: January 18, 2007Inventors: Razvan Ciocan, Huabei Jiang
-
Publication number: 20040087861Abstract: The invention provides a means to produce reconstructed refractive index spatial maps that reveal and allow visual separation of normal soft tissue and certain types of tumors. Detector fiber optic bundles positioned on the surface of a soft tissue organ receive and transmit scattered light data, from light in the near-infrared portion of the spectrum delivered to the surface of the organ by separate fiber optic bundles to a computer. Based on an established grid and certain assumed values, the data are analyzed by means of a complex algorithm to produce calculated refractive index values. Through iteration, the values are recalculated to minimize the difference between the observed scattering and calculated values to yield a stable map indicating spatial variation in refractive index and such variation in the form of displayed images indicates the presence of tumors in normal soft tissue.Type: ApplicationFiled: May 29, 2003Publication date: May 6, 2004Inventor: Huabei Jiang
-
Patent number: 6480276Abstract: A method and apparatus for determining particle size distribution in undiluted suspensions using spectral measurements of transport-scattering co-efficients using continuous photon-migration techniques is provided. Particle size distribution for concentrated suspensions is determined by a regularized inverse algorithm and may be obtained without a priori distribution function assumptions.Type: GrantFiled: July 13, 2000Date of Patent: November 12, 2002Assignee: Clemson UniversityInventor: Huabei Jiang
-
Patent number: 5818583Abstract: A system and method are disclosed for the self-calibrating, on-line determination of size distribution and volume fraction of a number of particles dispersed in a medium by detecting multiply scattered light from the particles. The multiply scattered light is re-emitted in response to exposure to a light source configured to provide light of time varying intensity at selected wavelengths. The determination includes calculating the isotropic scattering coefficient for the particles at each of a number of wavelengths from the multiply scattered light as a function of an intensity modulation phase shift, and iteratively estimating the size distribution and volume fraction as a function of the isotropic scattering coefficient for each of the wavelengths. An estimation approach based on an expected form of the distribution and the mass of the particles is also disclosed.Type: GrantFiled: November 8, 1996Date of Patent: October 6, 1998Assignee: Purdue Research FoundationInventors: Eva Sevick-Muraca, Joseph Pierce, Huabei Jiang, Jeffery Kao