Patents by Inventor Huagang Zhang

Huagang Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11370708
    Abstract: A fiber cement material formulation comprising a cementitious binder, a siliceous material, fiber, alumina trihydrate and a bifunctional low density additive wherein the bifunctional low density additive comprises any one or more of diatomaceous earth, recycled autoclave fiber cement dust or cellulose dust. The fiber cement material formulation optionally further comprises a secondary low density additive which may be perlite. In some embodiments, a fiber cement article manufactured from the fiber cement material formulation comprises a density of approximately 1.1 g/cm3 or below.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: June 28, 2022
    Assignee: James Hardie Technology Limited
    Inventors: Xiangyuan Liu, Huagang Zhang, Jongmin Keum, Yongjun Chen, Yan Li, Weiling Peng, Thinh Pham, Farshad J. Motamedi, Lijun Mao, Thomas Mueller
  • Publication number: 20210114933
    Abstract: A fiber cement material formulation comprising a cementitious binder, a siliceous material, fiber, alumina trihydrate and a bifunctional low density additive wherein the bifunctional low density additive comprises any one or more of diatomaceous earth, recycled autoclave fiber cement dust or cellulose dust. The fiber cement material formulation optionally further comprises a secondary low density additive which may be perlite. In some embodiments, a fiber cement article manufactured from the fiber cement material formulation comprises a density of approximately 1.1 g/cm3 or below.
    Type: Application
    Filed: October 20, 2020
    Publication date: April 22, 2021
    Inventors: Xiangyuan LIU, Huagang ZHANG, Jongmin KEUM, Yongjun CHEN, Yan LI, Weiling PENG, Thinh PHAM, Farshad J. MOTAMEDI, Lijun MAO, Thomas MUELLER
  • Patent number: 8609244
    Abstract: A low density material and a method for preparing a low-density material and precursor for forming a low-density material are provided. An aqueous mixture of inorganic primary component and a blowing agent is formed, the mixture is dried and optionally ground to form an expandable precursor. Such a precursor is then fired with activation of the blowing agent being controlled such that it is activated within a predetermined optimal temperature range. The firing conditions are also controlled to provide a low density sphere containing a heterogeneous sphere wall structure comprising a combination of amorphous glass and a crystalline phase or gas phase or both.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: December 17, 2013
    Assignee: James Hardie Technology Limited
    Inventors: Huagang Zhang, Hamid Hojaji, Shannon Marie Labernik, David L. Melmeth, Thinh Pham, James A. McFarlane
  • Patent number: 8574358
    Abstract: Shaped geopolymeric particles, fibers, and articles incorporating at least one geopolymer are provided; the geopolymeric particles, fibers, and articles having a structure that is solid, foamed, hollow or with one or more voids. Geopolymers are formed by alkali activation of an aluminosilicate and/or aluminophosphate material. The end-products are shaped as spheres, flakes, fibers, aggregates thereof or articles. Such products are formed at low temperatures; wherein forming includes processing using techniques such as spray drying, melt spinning, or blowing. The shaped geopolymeric particles and fibers have high chemical durability, high mechanical strength, application-targeted flowability and packing properties, and are specially suited for incorporating into composite materials, articles, and for use in cementitious, polymeric, paint, printing, adhesion and coating applications.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: November 5, 2013
    Assignee: James Hardie Technology Limited
    Inventors: Giang Biscan, Hamid Hojaji, David L. Melmeth, Thinh Pham, Huagang Zhang
  • Patent number: 8486271
    Abstract: Described herein is a cementitious article and a method of making using a water-based manufacturing system that incorporates a closed-loop or partially closed loop water recycling system and an alkali removal process. The system, as such is environmentally friendly, saves resources, such as water and other raw materials, and reduces waste disposal. The system further provides for a cementitious article having a low alkali content. Articles prepared by one or more processes described herein have characteristics that include a low apparent density, high strength and high freeze-thaw performance as compared with an article of the same general formulation but made from a comparative manufacturing system that does not include an alkali removal process. Articles described herein are suitable for use as building products, such as siding, the underlayment panel, board, trim, fascia, roofing, decking, and fence.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: July 16, 2013
    Assignee: James Hardie Technology Limited
    Inventors: Huagang Zhang, Lijun Mao, Paul Owen Kramer, Caidian Luo, Ryan Matthew Sullivan, John Andrew Joecken, Marko Suput
  • Patent number: 7897534
    Abstract: Precursor materials and methods of making are disclosed. The precursor materials include at least one of a silica source, and a carbon source, with or without liquid and a binder The methods described include pyrolyzing the precursor material to form a carbonaceous mixture and heat treating the mixture for a pre-determined time and at an elevated temperature during which carbon and/or nitrogen react with silica in the mixture to form carbides and/or nitrides. The carbides and nitrides formed from said methods may be used as blowing agents in a glass, ceramic, or metal forming processes or for promoting dispersion of the carbides and nitrides throughout a glass, ceramic, or metal composite.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: March 1, 2011
    Inventors: Giang Biscan, Hamid Hojaji, David Leslie Melmeth, Thinh Pham, Mark G. Stevens, Huagang Zhang
  • Patent number: 7878026
    Abstract: A synthetic microsphere having a low alkali metal oxide content and methods of forming the microsphere and its components are provided. The synthetic microsphere is substantially chemically inert and thus a suitable replacement for natural cenospheres, particularly in caustic environments such as cementitious mixtures. The synthetic microsphere can be made from an agglomerate precursor that includes an aluminosilicate material, such as fly ash, a blowing agent such as sugar, carbon black, and silicon carbide, and a binding agent. The synthetic microsphere is produced when the precursor is fired at a pre-determined temperature profile so as to form either solid or hollow synthetic microspheres depending on the processing conditions and/or components used.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: February 1, 2011
    Assignee: James Hardie Technology Limited
    Inventors: Amlan Datta, Hamid Hojaji, David L. Melmeth, James A. McFarlane, Thinh Pham, Noel E. Thompson, Huagang Zhang
  • Publication number: 20100326327
    Abstract: Described herein is a cementitious article and a method of making using a water-based manufacturing system that incorporates a closed-loop or partially closed loop water recycling system and an alkali removal process. The system, as such is environmentally friendly, saves resources, such as water and other raw materials, and reduces waste disposal. The system further provides for a cementitious article having a low alkali content. Articles prepared by one or more processes described herein have characteristics that include a low apparent density, high strength and high freeze-thaw performance as compared with an article of the same general formulation but made from a comparative manufacturing system that does not include an alkali removal process. Articles described herein are suitable for use as building products, such as siding, the underlayment panel, board, trim, fascia, roofing, decking, and fence.
    Type: Application
    Filed: June 11, 2010
    Publication date: December 30, 2010
    Applicant: James Hardie Technology Limited
    Inventors: Huagang Zhang, Lijun Mao, Paul Owen Kramer, Caidian Luo, Ryan Matthew Sullivan, John Andrew Joecken, Marko Suput
  • Publication number: 20100192808
    Abstract: A building product incorporating synthetic microspheres having a low alkali metal oxide content is provided. The synthetic microspheres are substantially chemically inert and thus a suitable replacement for natural cenospheres, particularly in caustic environments such as cementitious mixtures. The building product can have a cementitious matrix such as a fiber cement product. The synthetic microspheres can be incorporated as a low density additive and/or a filler for the building product and/or the like.
    Type: Application
    Filed: December 30, 2009
    Publication date: August 5, 2010
    Inventors: Amlan Datta, Hamid Hojaji, David L. Melmeth, James A. McFarlane, Thinh Pham, Noel E. Thompson, Huagang Zhang
  • Patent number: 7666505
    Abstract: A synthetic microsphere having a low alkali metal oxide content and methods of forming the microsphere and its components are provided. The synthetic microsphere is substantially chemically inert and thus a suitable replacement for natural cenospheres, particularly in caustic environments such as cementitious mixtures. The synthetic microsphere can be made from an agglomerate precursor that includes an aluminosilicate material, such as fly ash, a blowing agent such as sugar, carbon black, and silicon carbide, and a binding agent. The synthetic microsphere is produced when the precursor is fired at a pre-determined temperature profile so as to form either solid or hollow synthetic microspheres depending on the processing conditions and/or components used.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: February 23, 2010
    Assignee: James Hardie Technology Limited
    Inventors: Amlan Datta, Hamid Hojaji, David L. Melmeth, James A. McFarlane, Thinh Pham, Noel E. Thompson, Huagang Zhang
  • Patent number: 7651563
    Abstract: A building product incorporating synthetic microspheres having a low alkali metal oxide content is provided. The synthetic microspheres are substantially chemically inert and thus a suitable replacement for cenospheres derived from coal combustion, particularly in caustic environments such as cementitious mixtures. The building product can have a cementitious matrix such as a fiber cement product. The synthetic microspheres can be incorporated as a low density additive and/or a filler for the building product and/or the like.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: January 26, 2010
    Assignee: James Hardie Technology Limited
    Inventors: Amlan Datta, Hamid Hojaji, David L. Melmeth, James A. McFarlane, Thinh Pham, Noel E. Thompson, Huagang Zhang
  • Publication number: 20090200512
    Abstract: Carbides and nitrides are provided containing a controlled amount of pre-determined diluents and methods for their manufacture and use are disclosed. The pre-determined diluents include at least one of the silica, silicon metal, carbon, alumina, boron oxide, alkaline earth oxides such as calcium oxide, magnesium oxide, alkali oxides such as sodium oxide, potassium oxide, iron oxide, titanium oxide, and other components typically present in glass, ceramics, or metals. The carbides and nitrides with pre-determined diluents are formed by optionally pyrolyzing a precursor material to form a carboneous mixture and heat treating the carboneous mixture for a pre-determined time and at an elevated temperature during which carbon and/or nitrogen reacts with silica in the mixture to form carbides and/or nitrides and controlled amounts of pre-determined diluents.
    Type: Application
    Filed: April 16, 2009
    Publication date: August 13, 2009
    Inventors: Giang BISCAN, Hamid HOJAJI, David Leslie MELMETH, Thinh PHAM, Mark G. STEVENS, Huagang ZHANG
  • Publication number: 20090156385
    Abstract: Carbides and nitrides are provided containing a controlled amount of pre-determined diluents and methods for their manufacture and use are disclosed. The pre-determined diluents include at least one of the silica, silicon metal, carbon, alumina, boron oxide, alkaline earth oxides such as calcium oxide, magnesium oxide, alkali oxides such as sodium oxide, potassium oxide, iron oxide, titanium oxide, and other components typically present in glass, ceramics, or metals. The carbides and nitrides with pre-determined diluents are formed by optionally pyrolyzing a precursor material to form a carboneous mixture and heat treating the carboneous mixture for a pre-determined time and at an elevated temperature during which carbon and/or nitrogen reacts with silica in the mixture to form carbides and/or nitrides and controlled amounts of pre-determined diluents.
    Type: Application
    Filed: October 29, 2004
    Publication date: June 18, 2009
    Inventors: Giang Biscan, Hamid Hojaji, David Leslie Melmeth, Thinh Pham, Mark G. Stevens, Huagang Zhang
  • Publication number: 20090146108
    Abstract: A method of preparing a low-density material and precursor for forming a low-density material is provided. An aqueous mixture of inorganic primary component and a blowing agent is formed, the mixture is dried and optionally ground to form an expandable precursor. Such a precursor is then fired with activation of the blowing agent being controlled such that it is activated within a predetermined optimal temperature range. Control of the blowing agent can be accomplished via a variety of means including appropriate distribution throughout the precursor, addition of a control agent into the precursor, or modification of the firing conditions such as oxygen deficient or fuel rich environment, plasma heating etc.
    Type: Application
    Filed: November 6, 2008
    Publication date: June 11, 2009
    Inventors: Amlan Datta, Hamid Hojaji, Shannon Marie Labernik, David Leslie Melmeth, Thinh Pham, Huagang Zhang
  • Patent number: 7455798
    Abstract: A method of preparing a low-density material and precursor for forming a low-density material is provided. An aqueous mixture of inorganic primary component and a blowing agent is formed, the mixture is dried and optionally ground to form an expandable precursor. Such a precursor is then fired with activation of the blowing agent being controlled such that it is activated within a predetermined optimal temperature range. Control of the blowing agent can be accomplished via a variety of means including appropriate distribution throughout the precursor, addition of a control agent into the precursor, or modification of the firing conditions such as oxygen deficient or fuel rich environment, plasma heating etc.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: November 25, 2008
    Assignee: James Hardie International Finance B.V.
    Inventors: Amlan Datta, Hamid Hojaji, Shannon Marie Labernik, David Leslie Melmeth, Thinh Pham, Huagang Zhang
  • Publication number: 20080096018
    Abstract: A low density material and a method for preparing a low-density material and precursor for forming a low-density material are provided. An aqueous mixture of inorganic primary component and a blowing agent is formed, the mixture is dried and optionally ground to form an expandable precursor. Such a precursor is then fired with activation of the blowing agent being controlled such that it is activated within a predetermined optimal temperature range. The firing conditions are also controlled to provide a low density sphere containing a heterogeneous sphere wall structure comprising a combination of amorphous glass and a crystalline phase or gas phase or both.
    Type: Application
    Filed: December 8, 2006
    Publication date: April 24, 2008
    Applicant: JAMES HARDIE INTERNATIONAL FINANCE B.V.
    Inventors: Huagang Zhang, Hamid Hojaji, Shannon Labernik, David Melmeth, Thinh Pham, James McFarlane
  • Publication number: 20070144407
    Abstract: Shaped geopolymeric particles, fibers, and articles incorporating at least one geopolymer are provided; the geopolymeric particles, fibers, and articles having a structure that is solid, foamed, hollow or with one or more voids. Geopolymers are formed by alkali activation of an aluminosilicate and/or aluminophosphate material. The end-products are shaped as spheres, flakes, fibers, aggregates thereof or articles. Such products are formed at low temperatures; wherein forming includes processing using techniques such as spray drying, melt spinning, or blowing. The shaped geopolymeric particles and fibers have high chemical durability, high mechanical strength, application-targeted flowability and packing properties, and are specially suited for incorporating into composite materials, articles, and for use in cementitious, polymeric, paint, printing, adhesion and coating applications.
    Type: Application
    Filed: December 6, 2006
    Publication date: June 28, 2007
    Applicant: JAMES HARDIE INTERNATIONAL FINANCE B.V.
    Inventors: Giang Biscan, Hamid Hojaji, David Melmeth, Thinh Pham, Huagang Zhang
  • Publication number: 20040262801
    Abstract: A method of preparing a low-density material and precursor for forming a low-density material is provided. An aqueous mixture of inorganic primary component and a blowing agent is formed, the mixture is dried and optionally ground to form an expandable precursor. Such a precursor is then fired with activation of the blowing agent being controlled such that it is activated within a predetermined optimal temperature range. Control of the blowing agent can be accomplished via a variety of means including appropriate distribution throughout the precursor, addition of a control agent into the precursor, or modification of the firing conditions such as oxygen deficient or fuel rich environment, plasma heating etc.
    Type: Application
    Filed: February 25, 2004
    Publication date: December 30, 2004
    Inventors: Hamid Hojaji, Shannon Marie Labernik, Thinh Pham, Huagang Zhang
  • Publication number: 20040080063
    Abstract: A synthetic microsphere having a low alkali metal oxide content and methods of forming the microsphere and its components are provided. The synthetic microsphere is substantially chemically inert and thus a suitable replacement for natural cenospheres, particularly in caustic environments such as cementitious mixtures. The synthetic microsphere can be made from an agglomerate precursor that includes an aluminosilicate material, such as fly ash, a blowing agent such as sugar, carbon black, and silicon carbide, and a binding agent. The synthetic microsphere is produced when the precursor is fired at a pre-determined temperature profile so as to form either solid or hollow synthetic microspheres depending on the processing conditions and/or components used.
    Type: Application
    Filed: August 25, 2003
    Publication date: April 29, 2004
    Inventors: Amlan Datta, Hamid Hojaji, David L. Melmeth, James A. McFarlane, Thinh Pham, Noel E. Thompson, Huagang Zhang
  • Publication number: 20040079260
    Abstract: A building product incorporating synthetic microspheres having a low alkali metal oxide content is provided. The synthetic microspheres are substantially chemically inert and thus a suitable replacement for natural cenospheres, particularly in caustic environments such as cementitious mixtures. The building product can have a cementitious matrix such as a fiber cement product. The synthetic microspheres can be incorporated as a low density additive and/or a filler for the building product and/or the like.
    Type: Application
    Filed: August 25, 2003
    Publication date: April 29, 2004
    Inventors: Amlan Datta, Hamid Hojaji, David L. Melmeth, James A. McFarlane, Thinh Pham, Noel E. Thompson, Huagang Zhang