Patents by Inventor Huaibi Chen

Huaibi Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11562873
    Abstract: A magnetron is provided and includes a tube body with a plurality of communicated first cavities therein, a plurality of anodes in the first cavities including a cylinder and a plurality of vanes, outer ends of the vanes are connected with an inner circumferential surface of the cylinder; a first resonant cavity and a second resonant cavity are formed between the adjacent vanes, the cylinder is provided with a plurality of coupling slots arranged at intervals and running through the cylinder to communicate the first resonant cavity with the first cavity; a plurality of cathode arranged in and coaxially with the cylinder; the cathodes and inner ends of the vanes are spaced apart; at least part of the cathodes are located inside vanes, and an output slot is defined on the tube body for communicating the first cavity with an outside.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: January 24, 2023
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Jiaru Shi, Hao Zha, Jiayang Liu, Huaibi Chen, Chuanxiang Tang
  • Publication number: 20220086966
    Abstract: The present disclosure provides a microwave transmission method and a single-input multiple-output waveguide microwave system based on frequency control, an electronic device. The method includes: adjusting frequency of an input microwave, each of different input microwaves with different frequencies being input microwave of the single-input multi-output waveguide microwave system; assigning the input microwave to a target output port among multiple output ports of the single-input multiple-output waveguide microwave system, according to the frequency of the input microwave; and performing microwave output through the target output port.
    Type: Application
    Filed: October 12, 2020
    Publication date: March 17, 2022
    Inventors: Hao ZHA, Jiaru SHI, Focheng LIU, Huaibi CHEN
  • Publication number: 20220020553
    Abstract: A magnetron is provided and includes a tube body with a plurality of communicated first cavities therein, a plurality of anodes in the first cavities including a cylinder and a plurality of vanes, outer ends of the vanes are connected with an inner circumferential surface of the cylinder; a first resonant cavity and a second resonant cavity are formed between the adjacent vanes, the cylinder is provided with a plurality of coupling slots arranged at intervals and running through the cylinder to communicate the first resonant cavity with the first cavity; a plurality of cathode arranged in and coaxially with the cylinder; the cathodes and inner ends of the vanes are spaced apart; at least part of the cathodes are located inside vanes, and an output slot is defined on the tube body for communicating the first cavity with an outside.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 20, 2022
    Inventors: Jiaru SHI, Hao ZHA, Jiayang LIU, Huaibi CHEN, Chuanxiang TANG
  • Patent number: 11154729
    Abstract: An apparatus for applying an electron beam to a subdermal tumor generates a pulsed electron beam that is collimated to a diameter of less than 1 mm and less than 10 millimeter-milliradiant transverse emittance. A biopsy needle having an interior diameter less than 2 mm and length between 1 cm and 100 cm is inserted through the skin to the tumor, and the electron beam is electromagnetically directed through the needle, so as to reach the tumor without irradiating intervening normal tissue and with minimal irradiation of surrounding normal tissue. The electron pulsing rate can be in the S-band or Q-band, the beam energy can be between 1 Mev and 6 MeV, and/or the beam brightness can be less than 10 mm·mrad. A distal end of the biopsy needle can include an electron-permeable vacuum barrier, and the apparatus can be evacuated to less than 10?8 Torr.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: October 26, 2021
    Assignee: Shenzhen Ming-Jie Medical Science and Technologies Co. Ltd.
    Inventors: Wei Gai, Huijun Xu, Huaibi Chen
  • Patent number: 11054542
    Abstract: Embodiments of the disclosure provide a multi-ray-source accelerator and an inspection method. The multi-ray-source accelerator includes: a plurality of acceleration tubes, each acceleration tube of the plurality of acceleration tubes including an acceleration tube body that defines at least one cavity, the plurality of acceleration tubes being arranged in at least one row along a straight line or an arc and connected in series with each other; and a microwave unit configured to provide a microwave field to the plurality of acceleration tubes. The plurality of acceleration tubes are arranged to allow the microwave unit to provide the microwave field from an acceleration tube at one end of the plurality of acceleration tubes so as to accelerate electron beams in cavities of all the acceleration tubes.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: July 6, 2021
    Assignees: Tsinghua University, Nuctech Company Limited
    Inventors: Kejun Kang, Huaibi Chen, Yaohong Liu, Chuanxiang Tang, Yuanjing Li, Hao Zha, Liang Zhang
  • Publication number: 20210018649
    Abstract: Embodiments of the disclosure provide a multi-ray-source accelerator and an inspection method. The multi-ray-source accelerator includes: a plurality of acceleration tubes, each acceleration tube of the plurality of acceleration tubes including an acceleration tube body that defines at least one cavity, the plurality of acceleration tubes being arranged in at least one row along a straight line or an arc and connected in series with each other; and a microwave unit configured to provide a microwave field to the plurality of acceleration tubes. The plurality of acceleration tubes are arranged to allow the microwave unit to provide the microwave field from an acceleration tube at one end of the plurality of acceleration tubes so as to accelerate electron beams in cavities of all the acceleration tubes.
    Type: Application
    Filed: July 13, 2020
    Publication date: January 21, 2021
    Applicant: Nuctech Company Limited
    Inventors: Kejun Kang, Huaibi Chen, Yaohong Liu, Chuanxiang Tang, Yuanjing Li, Hao Zha, Liang Zhang
  • Patent number: 10701787
    Abstract: The disclosed technology relates to an X-ray conversion target. In one aspect, the X-ray conversion target includes target body and a target part arranged within the target body, the target part having a first face configured to produce X-rays. The X-ray conversion target further comprises a cooling passage having a side wall, at least a part of the side wall being consisted of a portion of the target part.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: June 30, 2020
    Assignees: Nuctech Company Limited, Tsinghua University
    Inventors: Yaohong Liu, Ziran Zhao, Jinsheng Liu, Huaibi Chen, Liang Zhang, Dongsheng Zhang
  • Patent number: 10578765
    Abstract: This invention provides a scan method, scan system and radiation scan controller, and relates to the field of radiation. The scanning method includes obtaining detection data of an object to be inspected under radiation scanning using a detector, adjusting an accelerator output beam dose rate and/or an output electron beam energy level of a radiation emission device according to the detection data. With this method, working conditions of the accelerator of the radiation emission device may be adjusted according to the detection data detected by the detector, so that for a region having a larger mass thickness, a higher output beam dose rate or a higher electron beam output energy level is adopted to guarantee satisfied imaging technical indexes, for a region having a smaller mass thickness, a lower output beam dose rate or a lower electron beam output energy level is adopted to reduce the environmental dose level while guaranteeing satisfied imaging technical indexes.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: March 3, 2020
    Inventors: Kejun Kang, Yaohong Liu, Ziran Zhao, Wei Jia, Jianping Gu, Chuanxiang Tang, Huaibi Chen, Jianjun Gao, Wei Yin, Xiying Liu
  • Patent number: 10495776
    Abstract: This invention provides a scan method, scan system and radiation scan controller, and relates to the field of radiation. Wherein, the scan method of this invention comprises: obtaining detection data of an object to be inspected under radiation scanning using a detector; adjusting an accelerator output beam dose rate and/or an output electron beam energy level of a radiation emission device according to the detection data. With this method, working conditions of the accelerator of the radiation emission device may be adjusted according to the detection data detected by the detector, so that for a region having a larger mass thickness, a higher output beam dose rate or a higher electron beam output energy level is adopted to guarantee satisfied imaging technical indexes, for a region having a smaller mass thickness, a lower output beam dose rate or a lower electron beam output energy level is adopted to reduce the environmental dose level while guaranteeing satisfied imaging technical indexes.
    Type: Grant
    Filed: October 10, 2016
    Date of Patent: December 3, 2019
    Inventors: Kejun Kang, Yaohong Liu, Ziran Zhao, Wei Jia, Jianping Gu, Chuanxiang Tang, Huaibi Chen, Jianjun Gao, Wei Yin, Xiying Liu
  • Publication number: 20190170894
    Abstract: This invention provides a scan method, scan system and radiation scan controller, and relates to the field of radiation. The scanning method includes obtaining detection data of an object to be inspected under radiation scanning using a detector, adjusting an accelerator output beam dose rate and/or an output electron beam energy level of a radiation emission device according to the detection data. With this method, working conditions of the accelerator of the radiation emission device may be adjusted according to the detection data detected by the detector, so that for a region having a larger mass thickness, a higher output beam dose rate or a higher electron beam output energy level is adopted to guarantee satisfied imaging technical indexes, for a region having a smaller mass thickness, a lower output beam dose rate or a lower electron beam output energy level is adopted to reduce the environmental dose level while guaranteeing satisfied imaging technical indexes.
    Type: Application
    Filed: January 22, 2019
    Publication date: June 6, 2019
    Inventors: Kejun KANG, Yaohong LIU, Ziran ZHAO, Wei JIA, Jianping GU, Chuanxiang TANG, Huaibi CHEN, Jianjun GAO, Wei YIN, Xiying LIU
  • Patent number: 10274636
    Abstract: The present invention may perform fluoroscopic imaging simultaneously on the subjects in at least two channels using only one electron accelerator, at least two sets of X-ray beams and at least two sets of detector systems, through the design of the electron accelerator, the shielding and collimating device, the at least two detector arrays and various mechanical composite structures. The X-ray fluoroscopic imaging system according to the present invention may be designed in specific forms of a stationary type, an assembled type, a track mobile type or vehicular mobile type, etc., and has advantages such as simple structure, low cost, strong function, good image quality and the like.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: April 30, 2019
    Assignees: NUCTECH COMPANY LIMITED, TSINGHUA UNIVERSITY
    Inventors: Huaping Tang, Zhiqiang Chen, Chuanxiang Tang, Huaibi Chen, Yuanjing Li, Ziran Zhao, Yaohong Liu, Shangmin Sun, Xinshui Yan, Zhanfeng Qin
  • Publication number: 20190090336
    Abstract: The disclosed technology relates to an X-ray conversion target. In one aspect, the X-ray conversion target includes target body and a target part arranged within the target body, the target part having a first face configured to produce X-rays. The X-ray conversion target further comprises a cooling passage having a side wall, at least a part of the side wall being consisted of a portion of the target part.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 21, 2019
    Inventors: Yaohong Liu, Ziran Zhao, Jinsheng Liu, Huaibi Chen, Liang Zhang, Dongsheng Zhang
  • Patent number: 10224170
    Abstract: The present invention provides an X-ray generating apparatus and an X-ray fluoroscopy imaging system comprising the same. The X-ray generating apparatus comprises: an electron accelerator, an electron emission unit, and a target; and a shielding and collimating device, including a shielding structure and multiple collimators arranged in the shielding structure, wherein the collimators are thin gaps extending from the target to an exterior surface of the shielding structure and having an axis transverse an electron beam shooting the target, and at least two collimators forming different angles with the electron beam are arranged on the same side of a plane contains the electron beam shooting the target, and the planes where the collimators locate form angles from 30 degrees to 150 degrees with the electron beam shooting the target, to draw out planar beams having different draw-out angles, each having uniform intensity distribution in its respective plane.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: March 5, 2019
    Assignees: NUCTECH COMPANY LIMITED, TSINGHUA UNIVERSITY
    Inventors: Huaping Tang, Chuanxiang Tang, Huaibi Chen
  • Publication number: 20190054321
    Abstract: An apparatus for applying an electron beam to a subdermal tumor generates a pulsed electron beam that is collimated to a diameter of less than 1 mm and less than 10 millimeter-milliradiant transverse emittance. A biopsy needle having an interior diameter less than 2 mm and length between 1 cm and 100 cm is inserted through the skin to the tumor, and the electron beam is electromagnetically directed through the needle, so as to reach the tumor without irradiating intervening normal tissue and with minimal irradiation of surrounding normal tissue. The electron pulsing rate can be in the S-band or Q-band, the beam energy can be between 1 Mev and 6 MeV, and/or the beam brightness can be less than 10 mm·mrad. A distal end of the biopsy needle can include an electron-permeable vacuum barrier, and the apparatus can be evacuated to less than 10?8 Torr.
    Type: Application
    Filed: August 17, 2018
    Publication date: February 21, 2019
    Inventors: Wei Gai, Huijun Xu, Huaibi Chen
  • Patent number: 9991085
    Abstract: An apparatus and method to generate distributed x-rays. A hot cathode of an electron gun is used in vacuum to generate electron beams having certain initial movement energy and speed. Periodic scanning is performed with the initial low-energy electron beams, which are thus caused to be reciprocally deflected. A current-limiting device is provided in the travel path of the electron beams along the direction of the reciprocal deflection. Through holes arranged in an array on the current-limiting device, only part of the electron beams targeting specific positions can pass to form sequential electron beam currents distributed in an array. These electron beam currents are accelerated by a high-voltage electric field to obtain high energy, bombard an anode target, and thus sequentially generate corresponding focus spots and x-rays distributed in an array at the anode target.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: June 5, 2018
    Assignees: TSINGHUA UNIVERSITY, NUCTECH COMPANY LIMITED
    Inventors: Yuanjing Li, Yaohong Liu, Jinsheng Liu, Huaping Tang, Chuanxiang Tang, Huaibi Chen, Xinshui Yan
  • Publication number: 20180090294
    Abstract: The present invention provides an X-ray generating apparatus and an X-ray fluoroscopy imaging system comprising the same. The X-ray generating apparatus comprises: an electron accelerator, an electron emission unit, and a target; and a shielding and collimating device, including a shielding structure and multiple collimators arranged in the shielding structure, wherein the collimators are thin gaps extending from the target to an exterior surface of the shielding structure and having an axis transverse an electron beam shooting the target, and at least two collimators forming different angles with the electron beam are arranged on the same side of a plane contains the electron beam shooting the target, and the planes where the collimators locate form angles from 30 degrees to 150 degrees with the electron beam shooting the target, to draw out planar beams having different draw-out angles, each having uniform intensity distribution in its respective plane.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 29, 2018
    Inventors: Huaping TANG, Chuanxiang TANG, Huaibi CHEN
  • Patent number: 9859087
    Abstract: The present invention provides an X-ray generating apparatus and an X-ray fluoroscopy imaging system comprising the same. The X-ray generating apparatus comprises: an electron accelerator including an electron acceleration unit, an electron emission unit, and a target; a shielding and collimating device, including a shielding structure and a collimator arranged in the shielding structure, wherein the target is surrounded by the shielding structure, the collimator is arranged in a direction passing through the target point and forming an angle from 30 degrees to 150 degrees with the electron beam shooting the target.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: January 2, 2018
    Assignees: NUCTECH COMPANY LIMITED, TSINGHUA UNIVERSITY
    Inventors: Huaping Tang, Chuanxiang Tang, Huaibi Chen
  • Patent number: 9857317
    Abstract: The X-ray fluoroscopic imaging system of the present invention comprises: an inspection passage; an electron accelerator; a shielding collimator apparatus comprising a shielding structure, and a first collimator for extracting a low energy planar sector X-ray beam and a second collimator for extracting a high energy planar sector X-ray beam which are disposed within the shielding structure; a low energy detector array for receiving the X-ray beam from the first collimator; and a high energy detector array for receiving the X-ray beam from the second collimator. The first collimator, the low energy detector array and the target point bombarded by the electron beam are located in a first plane; and the second collimator, the high energy detector array and the target point bombarded by the electron beam are located in a second plane.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: January 2, 2018
    Assignees: NUCTECH COMPANY LIMITED, TSINGHUA UNIVERSITY
    Inventors: Huaping Tang, Zhiqiang Chen, Chuanxiang Tang, Huaibi Chen, Yuanjing Li, Ziran Zhao, Yaohong Liu, Shangmin Sun, Xinshui Yan, Zhanfeng Qin
  • Publication number: 20170365440
    Abstract: An apparatus and method to generate distributed x-rays. A hot cathode of an electron gun is used in vacuum to generate electron beams having certain initial movement energy and speed. Periodic scanning is performed with the initial low-energy electron beams, which are thus caused to be reciprocally deflected. A current-limiting device is provided in the travel path of the electron beams along the direction of the reciprocal deflection. Through holes arranged in an array on the current-limiting device, only part of the electron beams targeting specific positions can pass to form sequential electron beam currents distributed in an array. These electron beam currents are accelerated by a high-voltage electric field to obtain high energy, bombard an anode target, and thus sequentially generate corresponding focus spots and x-rays distributed in an array at the anode target.
    Type: Application
    Filed: September 6, 2017
    Publication date: December 21, 2017
    Inventors: Yuanjing LI, Yaohong LIU, Jinsheng LIU, Huaping TANG, Chuanxiang TANG, Huaibi CHEN, Xinshui YAN
  • Publication number: 20170299762
    Abstract: This invention provides a scan method, scan system and radiation scan controller, and relates to the field of radiation. Wherein, the scan method of this invention comprises: obtaining detection data of an object to be inspected under radiation scanning using a detector; adjusting an accelerator output beam dose rate and/or an output electron beam energy level of a radiation emission device according to the detection data. With this method, working conditions of the accelerator of the radiation emission device may be adjusted according to the detection data detected by the detector, so that for a region having a larger mass thickness, a higher output beam dose rate or a higher electron beam output energy level is adopted to guarantee satisfied imaging technical indexes, for a region having a smaller mass thickness, a lower output beam dose rate or a lower electron beam output energy level is adopted to reduce the environmental dose level while guaranteeing satisfied imaging technical indexes.
    Type: Application
    Filed: October 10, 2016
    Publication date: October 19, 2017
    Inventors: Kejun Kang, Yaohong Liu, Ziran Zhao, Wei Jia, Jianping Gu, Chuanxiang Tang, Huaibi Chen, Jianjun Gao, Wei Yin, Xiying Liu