Patents by Inventor Huaiyu Meng

Huaiyu Meng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240078422
    Abstract: An optoelectronic computing system includes a first semiconductor die having a photonic integrated circuit (PIC) and a second semiconductor die having an electronic integrated circuit (EIC). The PIC includes optical waveguides, in which input values are encoded on respective optical signals carried by the optical waveguides. The PIC includes an optical copying distribution network having optical splitters. The PIC includes an array of optoelectronic circuitry sections, each receiving an optical wave from one of the output ports of the optical copying distribution network, and each optoelectronic circuitry section includes: at least one photodetector detecting at least one optical wave from the optoelectronic operation. The EIC includes electrical input ports receiving respective electrical values.
    Type: Application
    Filed: June 29, 2023
    Publication date: March 7, 2024
    Inventors: Huaiyu Meng, Yichen Shen, Yelong Xu, Gilbert Hendry, Longwu Ou, Jingdong Deng, Ronald Gagnon, Cheng-Kuan Lu, Maurice Steinman, Mike Evans, Jianhua Wu
  • Publication number: 20240077755
    Abstract: An integrated circuit interposer includes a semiconductor substrate layer; a first metal contact layer including a first metal contact section that includes metal contacts arranged for electrically coupling to a first semiconductor die in a controlled collapsed chip connection, and a second metal contact section that includes metal contacts arranged for electrically coupling to a second semiconductor die in a controlled collapsed chip connection. A first patterned layer includes individually photomask patterned metal path sections. A second patterned layer includes individually photomask patterned waveguide sections, including a first waveguide that crosses at least one boundary between individually photomask patterned waveguide sections.
    Type: Application
    Filed: April 27, 2023
    Publication date: March 7, 2024
    Inventors: Huaiyu Meng, Cheng-Kuan Lu, Jonathan Terry, Jingdong Deng, Maurice Steinman, Gilbert Hendry, Yichen Shen
  • Patent number: 11907832
    Abstract: A method includes: providing input information in an electronic format; converting the electronic input information into an optical input vector; optically transforming the optical input vector into an optical output vector based on an optical matrix multiplication; converting the optical output vector into an electronic format; and electronically applying a non-linear transformation to the electronically converted optical output vector to provide output information in an electronic format. For example, a set of input values are encoded on respective optical signals. For each of at least two subsets of optical signals, a copying module splits the subset into multiple copies of the optical signals. For each copy of a first subset of optical signals, a corresponding multiplication module multiplies the optical signals of the first subset by matrix element values using optical amplitude modulation. A summation module produces an electrical signal representing a sum of the results of the multiplication modules.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: February 20, 2024
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Yichen Shen, Huaiyu Meng, Li Jing, Rumen Dangovski, Peng Xie, Matthew Khoury, Cheng-Kuan Lu, Ronald Gagnon, Maurice Steinman, Jianhua Wu, Arash Hosseinzadeh
  • Patent number: 11853871
    Abstract: A system includes a first unit configured to generate a plurality of modulator control signals, and a processor unit. The processor unit includes: a light source or port configured to provide a plurality of light outputs, and a first set of optical modulators coupled to the light source or port and the first unit. The optical modulators in the first set are configured to generate an optical input vector by modulating the plurality of light outputs provided by the light source or port based on digital input values corresponding to a first set of modulator control signals in the plurality of modulator control signals, the optical input vector comprising a plurality of optical signals. The processor unit also includes a matrix multiplication unit that includes a second set of optical modulators.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: December 26, 2023
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Huaiyu Meng, Yichen Shen, Arash Hosseinzadeh, Yelong Xu, Yanfei Bai, Ronald Gagnon, Cheng-Kuan Lu, Jonathan Terry, Jingdong Deng, Maurice Steinman
  • Patent number: 11853870
    Abstract: A manufacturing method for a photonic device includes dividing a target photonic network, which is a photonic network configured for the photonic semiconductor device, into a plurality of sub-photonic networks, forming the plurality of sub-photonic networks on a plurality of photonic chips, and connecting the plurality of sub-photonic networks on the plurality of photonic chips through a coupler to obtain the photonic semiconductor device carrying the target photonic network, wherein the coupler is configured to couple light from one photonic chip to another photonic chip. Compared with the scale of the photonic network of the existing photonic semiconductor device, which is limited due to the footprint limitation of a single chip, the scale of the photonic network of the photonic semiconductor device is increased several times.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: December 26, 2023
    Assignee: NANJING GUANGZHIYUAN TECHNOLOGY CO., LTD.
    Inventors: Yichen Shen, Huaiyu Meng, Zhan Su, Yanfei Bai, Jinghui Zou
  • Patent number: 11783172
    Abstract: Systems and methods that include: providing input information in an electronic format; converting at least a part of the electronic input information into an optical input vector; optically transforming the optical input vector into an optical output vector based on an optical matrix multiplication; converting the optical output vector into an electronic format; and electronically applying a non-linear transformation to the electronically converted optical output vector to provide output information in an electronic format. In some examples, a set of multiple input values are encoded on respective optical signals carried by optical waveguides. For each of at least two subsets of one or more optical signals, a corresponding set of one or more copying modules splits the subset of one or more optical signals into two or more copies of the optical signals.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: October 10, 2023
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Yichen Shen, Huaiyu Meng, Li Jing, Rumen Dangovski, Peng Xie, Matthew Khoury, Cheng-Kuan Lu, Ronald Gagnon, Maurice Steinman, Jianhua Wu, Arash Hosseinzadeh
  • Patent number: 11734556
    Abstract: An optoelectronic computing system includes a first semiconductor die having a photonic integrated circuit (PIC) and a second semiconductor die having an electronic integrated circuit (EIC). The PIC includes optical waveguides, in which input values are encoded on respective optical signals carried by the optical waveguides. The PIC includes an optical copying distribution network having optical splitters. The PIC includes an array of optoelectronic circuitry sections, each receiving an optical wave from one of the output ports of the optical copying distribution network, and each optoelectronic circuitry section includes: at least one photodetector detecting at least one optical wave from the optoelectronic operation. The EIC includes electrical input ports receiving respective electrical values.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: August 22, 2023
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Huaiyu Meng, Yichen Shen, Yelong Xu, Gilbert Hendry, Longwu Ou, Jingdong Deng, Ronald Gagnon, Cheng-Kuan Lu, Maurice Steinman, Mike Evans, Jianhua Wu
  • Patent number: 11734555
    Abstract: Systems and methods that include: providing input information in an electronic format; converting at least a part of the electronic input information into an optical input vector; optically transforming the optical input vector into an optical output vector based on an optical matrix multiplication; converting the optical output vector into an electronic format; and electronically applying a non-linear transformation to the electronically converted optical output vector to provide output information in an electronic format. In some examples, a set of multiple input values are encoded on respective optical signals carried by optical waveguides. For each of at least two subsets of one or more optical signals, a corresponding set of one or more copying modules splits the subset of one or more optical signals into two or more copies of the optical signals.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: August 22, 2023
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Yichen Shen, Huaiyu Meng, Li Jing, Rumen Dangovski, Peng Xie, Matthew Khoury, Cheng-Kuan Lu, Ronald Gagnon, Maurice Steinman, Jianhua Wu, Arash Hosseinzadeh
  • Publication number: 20230259155
    Abstract: A method and a system for determining a guided random data sampling are disclosed. The method comprises: converting input data into an optical signal with a variable average intensity through a first conversion module; converting the optical signal into a guided optical signal according to guiding data by a photonic computing module, wherein the average intensity of the guided optical signal varies with the average intensity of the optical signal; and converting the guided optical signal into output data and outputting the output data by a second conversion module; wherein the noise generated by at least one of the first conversion module, the photonic computing module, and the second conversion module is added to the output data as a perturbation. By yielding the perturbation in the optical-analog domain, the output data can be quickly converged to an expected solution in the solving operation of the combinatorial optimization problem.
    Type: Application
    Filed: February 15, 2023
    Publication date: August 17, 2023
    Inventors: Andrew KNYAZEV, Huaiyu Meng, Yichen Shen
  • Patent number: 11719963
    Abstract: An apparatus having a segmented optical modulator includes an optical waveguide having three or more segments. Each of three or more optical modulators includes a corresponding waveguide segment and is configured to apply an optical modulation that is proportional to the length of the segment. Three or more electrical contacts receive respective bit values of binary values. Each binary value includes at least three bit values including a least significant bit (LSB) bit value, a most significant bit (MSB) bit value, and at least one intermediate bit (IB) bit value between the LSB bit value and the MSB bit value. At least one waveguide segment of a corresponding optical modulator receiving an LSB bit value is positioned between a first waveguide segment of a corresponding optical modulator receiving an MSB bit value and a second waveguide segment of a corresponding optical modulator receiving an IB bit value.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: August 8, 2023
    Assignee: Lightelligence, Inc.
    Inventors: Cheng-Kuan Lu, Gilbert Hendry, Huaiyu Meng, Yichen Shen
  • Publication number: 20230236621
    Abstract: The present disclosure relates to a field of photonic computing and provides a photonic computing system including: a photonic computing unit configured to receive a first plurality of optical signals, wherein the first plurality of the optical signals represent a first set of values respectively. The photonic computing unit includes a plurality of weight modules, the weight modules represent a plurality of predetermined values respectively, and each of the weight modules corresponds to one of the predetermined values. Each of the weight modules includes: an optical input part configured to receive one optical signal of the first plurality of the optical signals, and at least one directional coupler. The weight module corresponds to one of the predetermined values to achieve the multiplication operation.
    Type: Application
    Filed: January 19, 2023
    Publication date: July 27, 2023
    Applicant: Shanghai Xizhi Technology Co., Ltd
    Inventors: Bo Peng, Arash HOSSEINZADEH, Yelong XU, Huaiyu MENG, Yichen SHEN
  • Patent number: 11687767
    Abstract: Systems and methods that include: providing input information in an electronic format; converting at least a part of the electronic input information into an optical input vector; optically transforming the optical input vector into an optical output vector based on an optical matrix multiplication; converting the optical output vector into an electronic format; and electronically applying a non-linear transformation to the electronically converted optical output vector to provide output information in an electronic format. In some examples, a set of multiple input values are encoded on respective optical signals carried by optical waveguides. For each of at least two subsets of one or more optical signals, a corresponding set of one or more copying modules splits the subset of one or more optical signals into two or more copies of the optical signals.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: June 27, 2023
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Yichen Shen, Li Jing, Rumen Dangovski, Peng Xie, Huaiyu Meng, Matthew Khoury, Cheng-Kuan Lu, Ronald Gagnon, Maurice Steinman, Jianhua Wu, Arash Hosseinzadeh
  • Patent number: 11686955
    Abstract: An integrated circuit interposer includes a semiconductor substrate layer; a first metal contact layer including a first metal contact section that includes metal contacts arranged for electrically coupling to a first semiconductor die in a controlled collapsed chip connection, and a second metal contact section that includes metal contacts arranged for electrically coupling to a second semiconductor die in a controlled collapsed chip connection. A first patterned layer includes individually photomask patterned metal path sections. A second patterned layer includes individually photomask patterned waveguide sections, including a first waveguide that crosses at least one boundary between individually photomask patterned waveguide sections.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: June 27, 2023
    Assignee: Lightelligence, Inc.
    Inventors: Huaiyu Meng, Cheng-Kuan Lu, Jonathan Terry, Jingdong Deng, Maurice Steinman, Gilbert Hendry, Yichen Shen
  • Publication number: 20230099534
    Abstract: The present invention relates to a field of photonic integrated circuits, which provides a semiconductor device. In some embodiments, the semiconductor device includes: a PIC chip including a conductive structure in a via; a first electronic integrated circuit chip (i.e., first EIC chip) arranged on a first surface of the PIC chip; a second electronic integrated circuit chip (i.e., second EIC chip) arrange on a second surface of the PIC chip; wherein the first EIC chip is electrically connected to the second EIC chip through the conductive structure in the via of the PIC chip. The semiconductor device of the present invention optimizes wiring of the PIC chip and can suppress a voltage drop caused by quite a long wire, optimizing a package structure.
    Type: Application
    Filed: September 29, 2022
    Publication date: March 30, 2023
    Inventors: Jianhua WU, Cheng-Kuan LU, Huaiyu MENG, Yichen SHEN
  • Publication number: 20230057523
    Abstract: A system includes a first unit configured to generate a plurality of modulator control signals, and a processor unit. The processor unit includes: a light source or port configured to provide a plurality of light outputs, and a first set of optical modulators coupled to the light source or port and the first unit. The optical modulators in the first set are configured to generate an optical input vector by modulating the plurality of light outputs provided by the light source or port based on digital input values corresponding to a first set of modulator control signals in the plurality of modulator control signals, the optical input vector comprising a plurality of optical signals. The processor unit also includes a matrix multiplication unit that includes a second set of optical modulators.
    Type: Application
    Filed: November 3, 2022
    Publication date: February 23, 2023
    Inventors: Arash Hosseinzadeh, Yelong Xu, Yanfei Bai, Huaiyu Meng, Ronald Gagnon, Cheng-Kuan Lu, Jonathan Terry, Jingdong Deng, Maurice Steinman, Yichen Shen
  • Publication number: 20230008989
    Abstract: Embodiments of the present invention provide an optical structure, an optical coupling method, and a photonic integrated circuit chip. The optical structure includes: two optical coupling structures with different structures, that is, a first optical coupling structure and a second optical coupling structure. The first optical coupling structure includes a first optical transmission structure, and a first coupling port and a second coupling port both connected to the first optical transmission structure. The second optical coupling structure includes a second optical transmission structure, and a third coupling port and a photoelectric conversion structure both connected to the second optical transmission structure. When optical signals are provided in different methods or optical coupling is performed in different scenarios, optical signal coupling can be realized by using optical coupling structures of different structures in the abovementioned optical structure.
    Type: Application
    Filed: July 8, 2022
    Publication date: January 12, 2023
    Applicant: Nanjing Guangzhiyuan Technology Co., Ltd.
    Inventors: Zhan SU, Junjie CHEN, Jianhua WU, Yunpeng ZHU, Hui CHEN, Zhiquan XUE, Ronald GAGNON, Huaiyu MENG, Yichen SHEN
  • Publication number: 20220384409
    Abstract: The present invention relates to the field of photonic integrated circuits and provides a semiconductor device and a manufacturing method thereof. The semiconductor device includes an EIC chip and a PIC chip arranged on a substrate, the EIC chip is located between the PIC chip and the substrate. In embodiments, at least one EIC chip is disposed on a surface of a single PIC chip facing the substrate, and the EIC chip is mounted on the substrate through a connection structure. Therefore, the wiring of the PIC chip in the semiconductor device of the present invention is optimized such that the voltage drop due to long wiring distance can be suppressed, and the package structure of the semiconductor device is also optimized.
    Type: Application
    Filed: May 27, 2022
    Publication date: December 1, 2022
    Inventors: Bo PENG, Huaiyu MENG, Yichen SHEN
  • Patent number: 11507818
    Abstract: A system includes a first unit configured to generate a plurality of modulator control signals, and a processor unit. The processor unit includes: a light source or port configured to provide a plurality of light outputs, and a first set of optical modulators coupled to the light source or port and the first unit. The optical modulators in the first set are configured to generate an optical input vector by modulating the plurality of light outputs provided by the light source or port based on digital input values corresponding to a first set of modulator control signals in the plurality of modulator control signals, the optical input vector comprising a plurality of optical signals. The processor unit also includes a matrix multiplication unit that includes a second set of optical modulators.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: November 22, 2022
    Assignee: LIGHTELLIGENCE PTE. LTD.
    Inventors: Arash Hosseinzadeh, Yelong Xu, Yanfei Bai, Huaiyu Meng, Ronald Gagnon, Cheng-Kuan Lu, Jonathan Terry, Jingdong Deng, Maurice Steinman, Yichen Shen
  • Publication number: 20220343149
    Abstract: A manufacturing method for a photonic device includes dividing a target photonic network, which is a photonic network configured for the photonic semiconductor device, into a plurality of sub-photonic networks, forming the plurality of sub-photonic networks on a plurality of photonic chips, and connecting the plurality of sub-photonic networks on the plurality of photonic chips through a coupler to obtain the photonic semiconductor device carrying the target photonic network, wherein the coupler is configured to couple light from one photonic chip to another photonic chip. Compared with the scale of the photonic network of the existing photonic semiconductor device, which is limited due to the footprint limitation of a single chip, the scale of the photonic network of the photonic semiconductor device is increased several times.
    Type: Application
    Filed: April 22, 2022
    Publication date: October 27, 2022
    Inventors: Zhan SU, Yanfei BAI, Jinghui ZOU, Huaiyu MENG, Yichen SHEN
  • Publication number: 20220334418
    Abstract: The invention relates to the field of photonic integrated circuits and provides an optical modulator and a photonic integrated system, which can suppress phase deviation caused by carrier diffusion. The optical modulator includes at least one phase shifter including a waveguide channel for transmitting optical signal, and a P-type doped region and a N-type doped region located on opposite sides of the waveguide channel. In the waveguide channel, an undoped intrinsic region is located between the P-type doped region and the N-type doped region. At least one end of the intrinsic region or close to the at least one end is provided with a blocking structure for blocking the diffusion of carriers from the intrinsic region along the waveguide propagation direction, so that the phase deviation caused by the diffusion of carriers can be suppressed, and the electrical crosstalk between adjacent phase shifters can be suppressed, thereby avoiding modulation signal distortion caused by the electrical crosstalk.
    Type: Application
    Filed: April 14, 2022
    Publication date: October 20, 2022
    Inventors: Yanfei BAI, Zhan SU, Zhengguan LU, Yelong XU, Huaiyu MENG, Yichen SHEN