Patents by Inventor Huaizhou Zhao

Huaizhou Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11404621
    Abstract: Provided by the present invention is a magnesium-antimony-based (Mg—Sb-based) thermoelement, a preparation method and application thereof. The Mg—Sb-based thermoelement comprises: a substrate layer of a Mg—Sb-based thermoelectric material positioned in the center of the thermoelement, transitional layers that are attached to the two surfaces of the substrate layer, and two electrode layer that are respectively attached to the surfaces of the two transitional layers; the transitional layers are made of a magnesium-copper alloy and/or magnesium-aluminum alloy, and the electrode layer is made of copper. The transitional layer and the electrode layer which are developed in the present invention and which are suitable for a Mg—Sb-based thermoelectric material have great significance and prospects in application. The electrode layer enable the Mg—Sb-based thermoelectric material to have an opportunity to enter the market and realize commercialization.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: August 2, 2022
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Huaizhou Zhao, Jiawei Yang, Siyi Chang, Junling Gao
  • Publication number: 20220020909
    Abstract: Provided by the present invention is a magnesium-antimony-based (Mg—Sb-based) thermoelenient, preparation method and application thereof. The Mg—Sb-based. thermoelement comprises: a substrate layer of a Mg—Sb-based. thermoelectric material positioned in the center of the thermoelement, transitional layers that are attached to the two surfaces of the substrate layer, and two electrode layer that are respectively attached to the surfaces of the two transitional layers; the transitional layers are made of a magnesium-copper alloy and/or magnesium-aluminum alloy, and the electrode layer is made of copper. The transitional layer and the electrode layer which are developed in the present invention and which are suitable for a Mg—Sb-based thermoelectric material have great significance and prospects in application. The electrode layer enable the Mg—Sb-based thermoelectric material to have an opportunity to enter the market and realize commercialization.
    Type: Application
    Filed: February 22, 2019
    Publication date: January 20, 2022
    Applicant: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Huaizhou Zhao, Jiawei Yang, Siyi Chang, Junling Gao
  • Publication number: 20200024701
    Abstract: Systems and methods of manufacturing a thermoelectric, high performance material by using ball-milling and hot pressing materials according to various formulas, where some formulas substitute a different element for part of one of the elements in the formula, in order to obtain a figure of merit (ZT) suitable for thermoelectric applications.
    Type: Application
    Filed: April 30, 2019
    Publication date: January 23, 2020
    Applicant: University of Houston System
    Inventors: Zhifeng Ren, Huaizhou Zhao, Zhongjia Tang, Jiehe Sui, Yucheng Lan, Qing Jie
  • Patent number: 10323305
    Abstract: Systems and methods of manufacturing a thermoelectric, high performance material by using ball-milling and hot pressing materials according to various formulas, where some formulas substitute a different element for part of one of the elements in the formula, in order to obtain a figure of merit (ZT) suitable for thermoelectric applications.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: June 18, 2019
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Zhifeng Ren, Huaizhou Zhao, Zhongjia Tang, Jiehe Sui, Yucheng Lan, Qing Jie
  • Publication number: 20160326615
    Abstract: Systems and methods of manufacturing a thermoelectric, high performance material by using ball-milling and hot pressing materials according to various formulas, where some formulas substitute a different element for part of one of the elements in the formula, in order to obtain a figure of merit (ZT) suitable for thermoelectric applications.
    Type: Application
    Filed: February 17, 2015
    Publication date: November 10, 2016
    Inventors: Zhifeng Ren, Huaizhou Zhao, Zhongjia Tang, Jiehe Sui, Yucheng Lan, Qing Jie
  • Patent number: 9360509
    Abstract: A nanocoaxial sensor includes an outer conductor, an inner conductor, a nanoporous dielectric material disposed between the outer and inner conductors, a nanocavity sized to allow target species to enter the nanocavity between the outer and inner conductors.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: June 7, 2016
    Assignee: Trustees of Boston College
    Inventors: Michael J. Naughton, Dong Cai, Binod Rizal, Thomas Chiles, Huaizhou Zhao
  • Publication number: 20140015548
    Abstract: A nanocoaxial sensor includes an outer conductor, an inner conductor, a nanoporous dielectric material disposed between the outer and inner conductors, a nanocavity sized to allow target species to enter the nanocavity between the outer and inner conductors.
    Type: Application
    Filed: March 21, 2012
    Publication date: January 16, 2014
    Inventors: Michael J. Naughton, Dong Cai, Binod Rizal, Thomas Chiles, Huaizhou Zhao