Patents by Inventor HUANG-LIN CHAO

HUANG-LIN CHAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11031291
    Abstract: A semiconductor structure includes a substrate including a first region and a second region, a first channel layer disposed in the first region and a second channel layer disposed in the second region, a first dielectric layer disposed on the first channel layer and a second dielectric layer disposed on the second channel layer, and a first gate electrode disposed on the first dielectric layer and a second gate electrode disposed on the second dielectric layer. The first channel layer in the first region includes Ge compound of a first Ge concentration, the second channel layer in the second region includes Ge compound of a second Ge concentration. The first Ge concentration in the first channel layer is greater than the second Ge concentration in the second channel layer.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: June 8, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: I-Ming Chang, Chung-Liang Cheng, Hsiang-Pi Chang, Hung-Chang Sun, Yao-Sheng Huang, Yu-Wei Lu, Fang-Wei Lee, Ziwei Fang, Huang-Lin Chao
  • Patent number: 11018256
    Abstract: The present disclosure relates to a semiconductor device including a substrate and first and second spacers on the substrate. The semiconductor device also includes a gate stack between the first and second spacers. The gate stack includes a gate dielectric layer having a first portion formed on the substrate and a second portion formed on the first and second spacers; an internal gate formed on the first and second portions of the gate dielectric layer; a ferroelectric dielectric layer formed on the internal gate and in contact with the gate dielectric layer; and a gate electrode on the ferroelectric dielectric layer.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: May 25, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Ming Lin, Sai-Hooi Yeong, Ziwei Fang, Chi On Chui, Huang-Lin Chao
  • Patent number: 11018022
    Abstract: A method for forming a semiconductor device structure is provided. The method includes depositing a gate dielectric layer over a substrate. The substrate has a base portion and a first fin portion over the base portion, and the gate dielectric layer is over the first fin portion. The method includes forming a gate electrode layer over the gate dielectric layer. The gate electrode layer includes fluorine. The method includes annealing the gate electrode layer and the gate dielectric layer so that fluorine from the gate electrode layer diffuses into the gate dielectric layer.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: May 25, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: I-Ming Chang, Chih-Cheng Lin, Chi-Ying Wu, Wei-Ming You, Ziwei Fang, Huang-Lin Chao
  • Publication number: 20210130650
    Abstract: A CMP slurry composition and a method of polishing a metal layer are provided. In some embodiments, the CMP slurry composition includes about 0.1 to 10 parts by weight of a metal oxide, and about 0.1 to 10 parts by weight of a chelator. The chelator includes a thiol compound or a thiolether compound.
    Type: Application
    Filed: March 2, 2020
    Publication date: May 6, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Hung Liao, An-Hsuan Lee, Shen-Nan Lee, Teng-Chun Tsai, Chen-Hao Wu, Huang-Lin Chao
  • Patent number: 10998239
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having adjacent first and second fins protruding from the substrate. The semiconductor device structure also includes an insulating structure that includes a first insulating layer formed between and separating from the first fin and the second fin, a second insulating layer embedded in the first insulating layer, a first capping layer formed in the first insulating layer to cover a top surface of the second insulating layer, and a second capping layer in the first capping layer.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: May 4, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chu-An Lee, Chen-Hao Wu, Peng-Chung Jangjian, Chun-Wen Hsiao, Teng-Chun Tsai, Huang-Lin Chao
  • Publication number: 20210118995
    Abstract: The structure of a semiconductor device with different gate structures configured to provide ultra-low threshold voltages and a method of fabricating the semiconductor device are disclosed. The method includes forming first and second nanostructured channel regions in first and second nanostructured layers, respectively, and forming first and second gate-all-around (GAA) structures surrounding the first and second nanostructured channel regions, respectively. The forming the first and second GAA structures includes selectively forming an Al-based n-type work function metal layer and a Si-based capping layer on the first nanostructured channel regions, depositing a bi-layer of Al-free p-type work function metal layers on the first and second nanostructured channel regions, depositing a fluorine blocking layer on the bi-layer of Al-free p-type work function layers, and depositing a gate metal fill layer on the fluorine blocking layer.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 22, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang CHENG, Chun-I Wu, Huang-Lin Chao
  • Patent number: 10985022
    Abstract: Examples of a method of forming an integrated circuit device with an interfacial layer disposed between a channel region and a gate dielectric are provided herein. In some examples, the method includes receiving a workpiece having a substrate and a fin having a channel region disposed on the substrate. An interfacial layer is formed on the channel region of the fin, and a gate dielectric layer is formed on the interfacial layer. A first capping layer is formed on the gate dielectric layer, and a second capping layer is formed on the first capping layer. An annealing process is performed on the workpiece configured to cause a first material to diffuse from the first capping layer into the gate dielectric layer. The forming of the first and second capping layers and the annealing process may be performed in the same chamber of a fabrication tool.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: April 20, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Liang Cheng, Chun-I Wu, Ziwei Fang, Huang-Lin Chao
  • Patent number: 10985265
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a semiconductor layer on a semiconductor substrate, forming an interfacial layer on the semiconductor layer, forming a first gate dielectric layer on the interfacial layer, introducing fluorine on the first gate dielectric layer, annealing the first gate dielectric layer, forming a second gate dielectric layer on the first gate dielectric layer, introducing fluorine on the second gate dielectric layer, annealing the second gate dielectric layer, and forming a gate stack structure on the second gate dielectric layer.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: April 20, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Liang Cheng, I-Ming Chang, Hsiang-Pi Chang, Hsueh-Wen Tsau, Ziwei Fang, Huang-Lin Chao
  • Patent number: 10978567
    Abstract: The present disclosure describes a method that can eliminate or minimize the formation of an oxide on the metal gate layers of ferroelectric field effect transistors. In some embodiments, the method includes providing a substrate with fins thereon; depositing an interfacial layer on the fins; depositing a ferroelectric layer on the interfacial layer; depositing a metal gate layer on the ferroelectric layer; exposing the metal gate layer to a metal-halide gas; and performing a post metallization annealing, where the exposing the metal gate layer to the metal-halide gas and the performing the post metallization annealing occur without a vacuum break.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: April 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Ming Lin, Sai-Hooi Yeong, Ziwei Fang, Chi On Chui, Huang-Lin Chao
  • Patent number: 10971402
    Abstract: A method includes providing a channel region and growing an oxide layer on the channel region. Growing the oxide layer includes introducing a first source gas providing oxygen and introducing a second source gas providing hydrogen. The second source gas being different than the first source gas. The growing the oxide layer is grown by bonding the oxygen to a semiconductor element of the channel region to form the oxide layer and bonding the hydrogen to the semiconductor element of the channel region to form a semiconductor hydride byproduct. A gate dielectric layer and electrode can be formed over the oxide layer.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: April 6, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang Cheng, I-Ming Chang, Hsiang-Pi Chang, Yu-Wei Lu, Ziwei Fang, Huang-Lin Chao
  • Publication number: 20210098457
    Abstract: The present disclosure describes a semiconductor device that includes a semiconductor device that includes a first transistor having a first gate structure. The first gate structure includes a first gate dielectric layer doped with a first dopant at a first dopant concentration and a first work function layer on the first gate dielectric layer. The first gate structure also includes a first gate electrode on the first work function layer. The semiconductor device also includes a second transistor having a second gate structure, where the second gate structure includes a second gate dielectric layer doped with a second dopant at a second dopant concentration lower than the first dopant concentration. The second gate structure also includes a second work function layer on the second gate dielectric layer and a second gate electrode on the second work function layer.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang CHENG, I-Ming CHANG, Ziwei FANG, Huang-Lin CHAO
  • Publication number: 20210098266
    Abstract: A semiconductor substrate has an exposed surface having a compositionally uniform metal, and an embedded surface having the metal and an oxide. The exposed surface is polished using a first slurry including a first abrasive and a first amine-based alkaline until the embedded surface is exposed. The embedded surface is polished using a second slurry including a second abrasive and a second amine-based alkaline. The second abrasive is different from the first abrasive. The second amine-based alkaline is different from the first amine-based alkaline. The metal and the oxide each has a first and a second removal rate in the first slurry, respectively, and a third and fourth removal rate in the second slurry, respectively. A ratio of the first removal rate to the second removal rate is greater than 30:1, and a ratio of the third removal rate to the fourth removal rate is about 1:0.5 to about 1:2.
    Type: Application
    Filed: August 12, 2020
    Publication date: April 1, 2021
    Inventors: An-Hsuan Lee, Chun-Hung Liao, Chen-Hao Wu, Shen-Nan Lee, Teng-Chun Tsai, Huang-Lin Chao
  • Patent number: 10964549
    Abstract: A wafer is polished by performing a chemical reaction to change a property of a first portion of a material layer on the wafer using a first chemical substance. A first rinse is performed to remove the first chemical substance and retard the chemical reaction. A mechanical polishing process is then performed to remove the first portion of the material layer.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: March 30, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Shen-Nan Lee, Teng-Chun Tsai, Chu-An Lee, Chen-Hao Wu, Chun-Hung Liao, Huang-Lin Chao
  • Publication number: 20210083120
    Abstract: The present disclosure relates to methods for forming a semiconductor device. The method includes forming a substrate and forming first and second spacers on the substrate. The method includes depositing first and second self-assembly (SAM) layers respectively on sidewalls of the first and second spacers and depositing a layer stack on the substrate and between and in contact with the first and second SAM layers. Depositing the layer stack includes depositing a ferroelectric layer and removing the first and second SAM layers. The method further includes depositing a metal compound layer on the ferroelectric layer. Portions of the metal compound layer are deposited between the ferroelectric layer and the first or second spacers. The method also includes depositing a gate electrode on the metal compound layer and between the first and second spacers.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 18, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Ming LIN, Sai-Hooi YEONG, Ziwei FANG, Chi On CHUI, Huang-Lin CHAO
  • Publication number: 20210083068
    Abstract: The present disclosure describes a method that can eliminate or minimize the formation of an oxide on the metal gate layers of ferroelectric field effect transistors. In some embodiments, the method includes providing a substrate with fins thereon; depositing an interfacial layer on the fins; depositing a ferroelectric layer on the interfacial layer; depositing a metal gate layer on the ferroelectric layer; exposing the metal gate layer to a metal-halide gas; and performing a post metallization annealing, where the exposing the metal gate layer to the metal-halide gas and the performing the post metallization annealing occur without a vacuum break.
    Type: Application
    Filed: September 17, 2019
    Publication date: March 18, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Ming LIN, Sai-Hooi YEONG, Ziwei FANG, Chi On CHUI, Huang-Lin CHAO
  • Publication number: 20210057550
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a semiconductor layer on a semiconductor substrate, forming an interfacial layer on the semiconductor layer, forming a first gate dielectric layer on the interfacial layer, introducing fluorine on the first gate dielectric layer, annealing the first gate dielectric layer, forming a second gate dielectric layer on the first gate dielectric layer, introducing fluorine on the second gate dielectric layer, annealing the second gate dielectric layer, and forming a gate stack structure on the second gate dielectric layer.
    Type: Application
    Filed: August 22, 2019
    Publication date: February 25, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Liang CHENG, I-Ming CHANG, Hsiang-Pi CHANG, Hsueh-Wen TSAU, Ziwei FANG, Huang-Lin CHAO
  • Publication number: 20210057543
    Abstract: The present disclosure describes a method for forming a hard mask on a transistor's gate structure that minimizes gate spacer loss and gate height loss during the formation of self-aligned contact openings. The method includes forming spacers on sidewalls of spaced apart gate structures and disposing a dielectric layer between the gate structures. The method also includes etching top surfaces of the gate structures and top surfaces of the spacers with respect to a top surface of the dielectric layer. Additionally, the method includes depositing a hard mask layer haying a metal containing dielectric layer over the etched top surfaces of the gate structures and the spacers and etching the dielectric layer with an etching chemistry to form contact openings between the spacers, where the hard mask layer has a lower etch rate than the spacers when exposed to the etching chemistry.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 25, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chin-Hsiang LIN, Teng-Chun TSAI, Akira MINEJI, Huang-Lin CHAO
  • Publication number: 20210057581
    Abstract: The present disclosure relates to a semiconductor device including a substrate and first and second spacers on the substrate. The semiconductor device also includes a gate stack between the first and second spacers. The gate stack includes a gate dielectric layer having a first portion formed on the substrate and a second portion formed on the first and second spacers; an internal gate formed on the first and second portions of the gate dielectric layer; a ferroelectric dielectric layer formed on the internal gate and in contact with the gate dielectric layer; and a gate electrode on the ferroelectric dielectric layer.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 25, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Ming Lin, Sai-Hooi Yeong, Ziwei Fang, Chi On Chui, Huang-Lin Chao
  • Patent number: 10920105
    Abstract: A chemical mechanical polishing (CMP) slurry composition includes an oxidant including oxygen, and an abrasive particle having a core structure encapsulated by a shell structure. The core structure includes a first compound and the shell structure includes a second compound different from the first compound, where a diameter of the core structure is greater than a thickness of the shell structure, and where the first compound is configured to react with the oxidant to form a reactive oxygen species.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: February 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: An-Hsuan Lee, Shen-Nan Lee, Chen-Hao Wu, Chun-Hung Liao, Teng-Chun Tsai, Huang-Lin Chao
  • Publication number: 20210020786
    Abstract: The present disclosure relates to a semiconductor device includes a substrate and first and second spacers on the substrate. The semiconductor device includes a gate stack between the first and second spacers. The gate stack includes a gate dielectric layer having a first portion formed on the substrate and a second portion formed on the first and second spacers. The first portion includes a crystalline material and the second portion comprises an amorphous material.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 21, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Ming LIN, Sai-Hooi YEONG, Ziwei FANG, Bo-Feng YOUNG, Chi On CHUI, Chih-Yu CHANG, Huang-Lin CHAO