Patents by Inventor Huang Soon Kang

Huang Soon Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10857649
    Abstract: The present disclosure provides an apparatus for fabricating a semiconductor device. The apparatus includes a polishing head that is operable to perform a polishing process to a wafer. The apparatus includes a retaining ring that is rotatably coupled to the polishing head. The retaining ring is operable to secure the wafer to be polished. The apparatus includes a soft material component located within the retaining ring. The soft material component is softer than silicon. The soft material component is operable to grind a bevel region of the wafer during the polishing process. The apparatus includes a spray nozzle that is rotatably coupled to the polishing head. The spray nozzle is operable to dispense a cleaning solution to the bevel region of the wafer during the polishing process.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: December 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Bo-I Lee, Huang Soon Kang, Chi-Ming Yang, Chin-Hsiang Lin
  • Patent number: 9242342
    Abstract: A manufacture includes a substrate, a reinforcement layer over the substrate, and abrasive particles over the substrate. The abrasive particles are partially buried in the reinforcement layer. Upper tips of the abrasive particles are substantially coplanar.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: January 26, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Bo-I Lee, Huang Soon Kang, Chi-Ming Yang, Chin-Hsiang Lin
  • Patent number: 9138861
    Abstract: The present disclosure relates to a two-phase cleaning element that enhances polishing pad cleaning so as to prevent wafer scratches and contamination in chemical mechanical polishing (CMP) processes. In some embodiments, the two-phase pad cleaning element comprises a first cleaning element and a second cleaning element configured to successively operate upon a section of a CMP polishing pad. The first cleaning element comprises a megasonic cleaning jet configured to utilize cavitation energy to dislodge particles embedded in the CMP polishing pad without damaging the surface of the polishing pad. The second cleaning element is configured to apply a high pressure mist, comprising two fluids, to remove by-products from the CMP polishing pad. By using megasonic cleaning to dislodge embedded particles a two-fluid mist to flush away by-products (e.g., including the dislodged embedded particles), the two-phase pad cleaning element enhances polishing pad cleaning.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: September 22, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jiann Lih Wu, Bo-I Lee, Huang Soon Kang, Chi-Ming Yang, Chin-Hsiang Lin
  • Patent number: 9102033
    Abstract: An apparatus and method for providing target thickness and surface profile uniformity control of a multi-head chemical mechanical polishing (CMP) process is disclosed. An exemplary method includes providing at least two wafers; determining a surface profile of each of the at least two wafers; determining an operation mode for a chemical mechanical polishing (CMP) process based on the surface profiles of the at least two wafers; determining a CMP polishing recipe for each of the at least two wafers based on the operation mode; and performing the CMP process on the at least two wafers based on the determined CMP polishing recipes.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: August 11, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Keung Hui, Jin-Ning Sung, Huang Soon Kang, Yen-Di Tsen, Jong-I Mou
  • Patent number: 8673783
    Abstract: The present disclosure provides a method of fabricating a semiconductor device, a semiconductor device fabricated by such a method, and a chemical mechanical polishing (CMP) tool for performing such a method. In one embodiment, a method of fabricating a semiconductor device includes providing an integrated circuit (IC) wafer including a metal conductor in a trench of a dielectric layer over a substrate, and performing a chemical mechanical polishing (CMP) process to planarize the metal conductor and the dielectric layer. The method further includes cleaning the planarized metal conductor and dielectric layer to remove residue from the CMP process, rinsing the cleaned metal conductor and dielectric layer with an alcohol, and drying the rinsed metal conductor and dielectric layer in an inert gas environment.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: March 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Huang Soon Kang, Han-Hsin Kuo, Chi-Ming Yang, Shwang-Ming Jeng, Chin-Hsiang Lin
  • Publication number: 20130244552
    Abstract: A manufacture includes a substrate, a reinforcement layer over the substrate, and abrasive particles over the substrate. The abrasive particles are partially buried in the reinforcement layer. Upper tips of the abrasive particles are substantially coplanar.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Bo-I Lee, Huang Soon Kang, Chi-Ming Yang, Chin-Hsiang Lin
  • Publication number: 20130078810
    Abstract: The present disclosure provides an apparatus for fabricating a semiconductor device. The apparatus includes a polishing head that is operable to perform a polishing process to a wafer. The apparatus includes a retaining ring that is rotatably coupled to the polishing head. The retaining ring is operable to secure the wafer to be polished. The apparatus includes a soft material component located within the retaining ring. The soft material component is softer than silicon. The soft material component is operable to grind a bevel region of the wafer during the polishing process. The apparatus includes a spray nozzle that is rotatably coupled to the polishing head. The spray nozzle is operable to dispense a cleaning solution to the bevel region of the wafer during the polishing process.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Bo-I Lee, Huang Soon Kang, Chi-Ming Yang, Chin-Hsiang Lin
  • Patent number: 8277286
    Abstract: A chemical mechanical polishing method and apparatus provides a deformable, telescoping slurry dispenser arm coupled to a dispenser head that may be arcuate in shape and may also be a bendable telescoping member that can be adjusted to vary the number of slurry dispenser ports and the degree of curvature of the dispenser head. The dispenser arm may additionally include slurry dispenser ports therein. The dispenser arm may advantageously be formed of a plurality of nested tubes that are slidable with respect to one another. The adjustable dispenser arm may pivot about a pivot point and can be variously positioned to accommodate different sized polishing pads used to polish substrates of different dimensions and the bendable, telescoping slurry dispenser arm and dispenser head provide uniform slurry distribution to any of various wafer polishing locations, effective slurry usage and uniform polishing profiles in each case.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: October 2, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kun-Ku Hung, Zin-Chang Wei, Huang Soon Kang, Chyi-Shyuan Chern
  • Publication number: 20120129431
    Abstract: An apparatus and method for providing target thickness and surface profile uniformity control of a multi-head chemical mechanical polishing (CMP) process is disclosed. An exemplary method includes providing at least two wafers; determining a surface profile of each of the at least two wafers; determining an operation mode for a chemical mechanical polishing (CMP) process based on the surface profiles of the at least two wafers; determining a CMP polishing recipe for each of the at least two wafers based on the operation mode; and performing the CMP process on the at least two wafers based on the determined CMP polishing recipes.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: KEUNG HUI, Jin-Ning Sung, Huang Soon Kang, Yen-Di Tsen, Jong-I Mou
  • Publication number: 20120001262
    Abstract: The present disclosure provides a method of fabricating a semiconductor device, a semiconductor device fabricated by such a method, and a chemical mechanical polishing (CMP) tool for performing such a method. In one embodiment, a method of fabricating a semiconductor device includes providing an integrated circuit (IC) wafer including a metal conductor in a trench of a dielectric layer over a substrate, and performing a chemical mechanical polishing (CMP) process to planarize the metal conductor and the dielectric layer. The method further includes cleaning the planarized metal conductor and dielectric layer to remove residue from the CMP process, rinsing the cleaned metal conductor and dielectric layer with an alcohol, and drying the rinsed metal conductor and dielectric layer in an inert gas environment.
    Type: Application
    Filed: July 2, 2010
    Publication date: January 5, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Huang Soon Kang, Han-Hsin Kuo, Chi-Ming Yang, Shwang-Ming Jeng, Chin-Hsiang Lin
  • Publication number: 20100210189
    Abstract: A chemical mechanical polishing method and apparatus provides a deformable, telescoping slurry dispenser arm coupled to a dispenser head that may be arcuate in shape and may also be a bendable telescoping member that can be adjusted to vary the number of slurry dispenser ports and the degree of curvature of the dispenser head. The dispenser arm may additionally include slurry dispenser ports therein. The dispenser arm may advantageously be formed of a plurality of nested tubes that are slidable with respect to one another. The adjustable dispenser arm may pivot about a pivot point and can be variously positioned to accommodate different sized polishing pads used to polish substrates of different dimensions and the bendable, telescoping slurry dispenser arm and dispenser head provide uniform slurry distribution to any of various wafer polishing locations, effective slurry usage and uniform polishing profiles in each case.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 19, 2010
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kun-Ku Hung, Zin-Chang Wei, Huang Soon Kang, Chyi-Shyuan Chern