Patents by Inventor Huapu Pan

Huapu Pan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10197733
    Abstract: An edge coupling device including a substrate, a buried oxide disposed over the substrate, a cladding material disposed over the buried oxide, where the cladding material includes a trench, an inversely tapered silicon waveguide disposed within the cladding material beneath the trench, and a ridge waveguide disposed within the trench, where the ridge waveguide and the inversely tapered silicon waveguide are vertically-aligned with each other.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: February 5, 2019
    Assignee: Futurewei Technologies, Inc.
    Inventors: Huapu Pan, Zongrong Liu, Hongzhen Wei, Hongmin Chen
  • Patent number: 10120135
    Abstract: An apparatus comprises a substrate comprising a silicon dioxide (SiO2) material disposed on top of the substrate, a silicon waveguide comprising a first adiabatic tapering and enclosed in the silicon dioxide material, and a low-index waveguide disposed on top of the substrate and adjacent to the first adiabatic tapering. A mode converter fabrication method comprises obtaining a mode converter comprising a substrate, a silicon waveguide disposed on the substrate and comprising a sidewall and a first adiabatic tapering, and a hard mask disposed on the silicon waveguide and comprising a silicon dioxide layer, wherein the hard mask does not cover the sidewall, and oxidizing the silicon waveguide and the hard mask, wherein oxidizing the silicon waveguide and the hard mask encloses the silicon waveguide within the silicon dioxide layer.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: November 6, 2018
    Assignee: Futurewei Technologies, Inc.
    Inventors: Li Yang, Huapu Pan, Qianfan Xu, Dawei Zheng, Xiao Shen
  • Publication number: 20170269302
    Abstract: An apparatus comprises a substrate comprising a silicon dioxide (SiO2) material disposed on top of the substrate, a silicon waveguide comprising a first adiabatic tapering and enclosed in the silicon dioxide material, and a low-index waveguide disposed on top of the substrate and adjacent to the first adiabatic tapering. A mode converter fabrication method comprises obtaining a mode converter comprising a substrate, a silicon waveguide disposed on the substrate and comprising a sidewall and a first adiabatic tapering, and a hard mask disposed on the silicon waveguide and comprising a silicon dioxide layer, wherein the hard mask does not cover the sidewall, and oxidizing the silicon waveguide and the hard mask, wherein oxidizing the silicon waveguide and the hard mask encloses the silicon waveguide within the silicon dioxide layer.
    Type: Application
    Filed: June 5, 2017
    Publication date: September 21, 2017
    Inventors: Li Yang, Huapu Pan, Qianfan Xu, Dawei Zheng, Xiao Shen
  • Publication number: 20170219777
    Abstract: An edge coupling device including a substrate, a buried oxide disposed over the substrate, a cladding material disposed over the buried oxide, where the cladding material includes a trench, an inversely tapered silicon waveguide disposed within the cladding material beneath the trench, and a ridge waveguide disposed within the trench, where the ridge waveguide and the inversely tapered silicon waveguide are vertically-aligned with each other.
    Type: Application
    Filed: April 19, 2017
    Publication date: August 3, 2017
    Inventors: Huapu Pan, Zongrong Liu, Hongzhen Wei, Hongmin Chen
  • Patent number: 9709741
    Abstract: An apparatus comprises a substrate comprising a silicon dioxide (SiO2) material disposed on top of the substrate, a silicon waveguide comprising a first adiabatic tapering and enclosed in the silicon dioxide material, and a low-index waveguide disposed on top of the substrate and adjacent to the first adiabatic tapering. A mode converter fabrication method comprises obtaining a mode converter comprising a substrate, a silicon waveguide disposed on the substrate and comprising a sidewall and a first adiabatic tapering, and a hard mask disposed on the silicon waveguide and comprising a silicon dioxide (SiO2) layer, wherein the hard mask does not cover the sidewall, and oxidizing the silicon waveguide and the hard mask, wherein oxidizing the silicon waveguide and the hard mask encloses the silicon waveguide within the silicon dioxide layer.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: July 18, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Li Yang, Huapu Pan, Qianfan Xu, Dawei Zheng, Xiao Shen
  • Patent number: 9703039
    Abstract: A method of fabricating an edge coupling device and an edge coupling device are provided. The method includes removing a portion of cladding material to form a trench over an inversely tapered silicon waveguide, depositing a material having a refractive index greater than silicon dioxide over remaining portions of the cladding material and in the trench, and removing a portion of the material within the trench to form a ridge waveguide.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: July 11, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Huapu Pan, Zongrong Liu, Hongzhen Wei, Hongmin Chen
  • Patent number: 9638857
    Abstract: An apparatus comprising a waveguide along a longitudinal axis at a first elevation, an optical splitter coupled to a first edge of the waveguide along the longitudinal axis, two or more inverse tapers coupled to a second edge of the optical splitter along the longitudinal axis, and one or more offset inverse tapers that are substantially parallel with the two or more inverse tapers, wherein the one or more offset inverse tapers are along the longitudinal axis at a second elevation.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: May 2, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Yu Sheng Bai, Huapu Pan
  • Patent number: 9563014
    Abstract: An apparatus comprising a thick waveguide comprising a first adiabatic tapering from a first location to a second location, wherein the first adiabatic tapering is wider at the first location than at the second location, and a thin slab waveguide comprising a second adiabatic tapering from the first location to the second location, wherein the second adiabatic tapering is wider at the second location than at the first location, and a third adiabatic tapering from the second location to a third location, wherein the third adiabatic tapering is wider at the second location than at the third location, wherein at least a portion of the first adiabatic tapering is adjacent to the second adiabatic tapering, and wherein the first adiabatic tapering and the second adiabatic tapering are separated from each other by a constant gap.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: February 7, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Huapu Pan, Hongmin Chen, Xueyan Zheng
  • Publication number: 20160377809
    Abstract: A method includes forming a first optical structure with an inverse taper and a separate optical structure on a semiconductor chip. The illustrative method also includes applying a protective structure over the optical structures and patterning the protective structure to expose the separate optical structure. The method further includes removing a portion of the separate optical structure to form a separate trimmed taper separate from, but adjacent to, the first optical structure. The protective structure is then removed from the first optical structure. Apparatuses are also disclosed.
    Type: Application
    Filed: June 25, 2015
    Publication date: December 29, 2016
    Inventors: Li Yang, Huapu Pan, Yu Sheng Bai, Xiao Andy Shen
  • Publication number: 20150316720
    Abstract: An apparatus comprises a substrate comprising a silicon dioxide (SiO2) material disposed on top of the substrate, a silicon waveguide comprising a first adiabatic tapering and enclosed in the silicon dioxide material, and a low-index waveguide disposed on top of the substrate and adjacent to the first adiabatic tapering. A mode converter fabrication method comprises obtaining a mode converter comprising a substrate, a silicon waveguide disposed on the substrate and comprising a sidewall and a first adiabatic tapering, and a hard mask disposed on the silicon waveguide and comprising a silicon dioxide (SiO2) layer, wherein the hard mask does not cover the sidewall, and oxidizing the silicon waveguide and the hard mask, wherein oxidizing the silicon waveguide and the hard mask encloses the silicon waveguide within the silicon dioxide layer.
    Type: Application
    Filed: April 30, 2015
    Publication date: November 5, 2015
    Inventors: Li Yang, Huapu Pan, Qianfan Xu, Dawei Zheng, Xiao Shen
  • Publication number: 20150293303
    Abstract: A method of fabricating an edge coupling device and an edge coupling device are provided. The method includes removing a portion of cladding material to form a trench over an inversely tapered silicon waveguide, depositing a material having a refractive index greater than silicon dioxide over remaining portions of the cladding material and in the trench, and removing a portion of the material within the trench to form a ridge waveguide.
    Type: Application
    Filed: April 7, 2015
    Publication date: October 15, 2015
    Inventors: Huapu Pan, Zongrong Liu, Hongzhen Wei, Hongmin Chen
  • Publication number: 20150285997
    Abstract: An apparatus comprising a thick waveguide comprising a first adiabatic tapering from a first location to a second location, wherein the first adiabatic tapering is wider at the first location than at the second location, and a thin slab waveguide comprising a second adiabatic tapering from the first location to the second location, wherein the second adiabatic tapering is wider at the second location than at the first location, and a third adiabatic tapering from the second location to a third location, wherein the third adiabatic tapering is wider at the second location than at the third location, wherein at least a portion of the first adiabatic tapering is adjacent to the second adiabatic tapering, and wherein the first adiabatic tapering and the second adiabatic tapering are separated from each other by a constant gap.
    Type: Application
    Filed: April 7, 2015
    Publication date: October 8, 2015
    Inventors: Huapu Pan, Hongmin Chen, Xueyan Zheng
  • Publication number: 20150117813
    Abstract: An apparatus comprising a waveguide along a longitudinal axis at a first elevation, an optical splitter coupled to a first edge of the waveguide along the longitudinal axis, two or more inverse tapers coupled to a second edge of the optical splitter along the longitudinal axis, and one or more offset inverse tapers that are substantially parallel with the two or more inverse tapers, wherein the one or more offset inverse tapers are along the longitudinal axis at a second elevation.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 30, 2015
    Inventors: Yu Sheng Bai, Huapu Pan
  • Publication number: 20130330036
    Abstract: A method of exciting a selected light propagation mode in a device is disclosed. At least two light beams are propagated proximate a waveguide of the device substantially parallel to a selected surface of the waveguide. Light is transferred from the at least two beams of light into the waveguide through the selected surface to excite the selected light propagation mode in the waveguide.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 12, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, Huapu Pan, Yurii Vlasov
  • Publication number: 20130330037
    Abstract: A method of exciting a selected light propagation mode in a device is disclosed. At least two light beams are propagated proximate a waveguide of the device substantially parallel to a selected surface of the waveguide. Light is transferred from the at least two beams of light into the waveguide through the selected surface to excite the selected light propagation mode in the waveguide.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 12, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, Huapu Pan, Yurii Vlasov
  • Publication number: 20100327382
    Abstract: The monolithic application of a high speed TWPDA with impedance matching. Use of the high speed monolithic TWPDA will allow for more efficient transfer of optical signals within analog circuits and over distances.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 30, 2010
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Joe C. Campbell, Andreas Beling, Huapu Pan