Patents by Inventor Huazhi GU

Huazhi GU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11919814
    Abstract: The disclosure relates to a method for simulating intraplate volcanism. A technical solution is: mixing 47-60 wt % of calcium oxide powder, 35 wt % of alumina powder and 5-18 wt % of silica powder uniformly to obtain a mixed powder; putting the mixed powder in a corundum crucible, placing the crucible in a high-temperature furnace provided with an observation window outside which an industrial camera with a depression angle of 30-45° is provided, heating to 1,500-1,900° C. at a rate of 1-30° C./min under an air atmosphere at a normal pressure, holding for 0.5-5 h; recording intraplate volcanism formed by upwelling of a melt of the mixed powder along an inner wall of the crucible during the holding with the industrial camera to obtain a simulated process of the intraplate volcanism.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: March 5, 2024
    Assignee: Wuhan University of Science and Technology
    Inventors: Ao Huang, Yongshun Zou, Huazhi Gu
  • Patent number: 11835331
    Abstract: The disclosure relates to a method for fabricating a speckle for high temperature deformation measurement of a shaped refractory material. A technical solution includes mixing a hercynite micropowder and a liquid mixing agent in a mass ratio of (3-6):1, and ultrasonically treating to obtain a speckle mixture; polishing a surface of a shaped refractory material to be measured, removing impurities, and spraying the speckle mixture on the surface of the shaped refractory material to be measured with a pneumatic airbrush in a time hood to obtain an uncured speckle; heating the uncured speckle to 60-80° C., keeping for 1-3 h, then heating to 100-120° C., and keeping for 1-3 h to obtain a speckle for high temperature deformation measurement of a shaped refractory material. The fabricated product is suitable for high temperature deformation measurement of a shaped refractory material at 1,600° C.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: December 5, 2023
    Assignee: Wuhan University of Science and Technology
    Inventors: Ao Huang, Shenghao Li, Huazhi Gu, Lvping Fu, Yajie Dai
  • Patent number: 11680020
    Abstract: A titanium-containing calcium hexaaluminate material and preparation method thereof is disclosed. The technical solution is: using 60˜80 wt % alumina micro powder, 5˜20 wt % calcium-containing micro powder, 10˜20 wt % titania micro powder and 1˜10 wt % manganese oxide micro powder as raw materials, blending the raw materials evenly in a planetary ball mill to obtain a blend, machine pressing the blend at 100˜200 MPa to obtain a green body, drying the green body at 110˜200° C. for 12˜36 h, and incubating the dried green body at 1500˜1800° C. for 1˜8 h to obtain the titanium-containing calcium hexaaluminate material. The present disclosure has low cost and simple process, and the prepared titanium-containing calcium hexaaluminate material has the characteristics of good chemical stability, high thermal shock resistance and strong melt resistance to titanium-aluminum alloy.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: June 20, 2023
    Assignee: WUHAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Lvping Fu, Huazhi Gu, Ao Huang, Meijie Zhang
  • Patent number: 11660663
    Abstract: A spiral-orifice ceramic filter for metal casting, including spiral channels and two drain openings, where the spiral channels are distributed in a ceramic substrate in a staggered manner. By adoption of the spiral channel structure, molten metal may rotate to generate a centrifugal force while flowing forwards so as to promote separation of inclusions. The spiral-orifice ceramic filter for metal casting includes the following components: 90-95 wt % of MgO, 4-8 wt % of SiO2 and 2-4 wt % of ZrO2. Therefore, the spiral-orifice ceramic filter for metal casting has high strength under normal temperature and optional thermal impact resistance under high temperature, and may tolerate the impact of molten metal at 1700° C. or higher without break. The ceramic substrate and the spiral channel are superficially coated with one layer of functional oxide prepared from CaO.2Al2O3, CaO.6Al2O3, Al2O3, TiO2, or Re2O3.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: May 30, 2023
    Assignee: Wuhan University of Science and Technology
    Inventors: Guangqiang Li, Qiang Wang, Yu Liu, Ao Huang, Wen Yan, Wan Zheng, Huazhi Gu
  • Patent number: 11643364
    Abstract: The present disclosure relates to a magnesium-based raw material and a preparation method thereof. According to the technical solution, 40-60 wt % fused magnesia particles, 30-40 wt % fine monoclinic zirconia powder, 5-20 wt % fine zirconium oxychloride powder, 0.5-1.5 wt % calcium hydroxide nanopowder, 0.2-0.5 wt % calcium hydroxide nanopowder, and 0.1-0.3 wt % maleic acid are stirred for 15 min to mix well in a high-speed mixing mill at a constant temperature of 25° C. to obtain a mixed powder; and the mixed powder is mixed through a ball mill at a constant temperature of 25° C. for 3 min, roasted in a high temperature furnace at 250-400° C. for 0.5-3 h, and finally cooled to room temperature.
    Type: Grant
    Filed: June 12, 2021
    Date of Patent: May 9, 2023
    Assignee: WUHAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Ao Huang, Yanzhu Huo, Huazhi Gu, Yongshun Zou, Lvping Fu, Meijie Zhang
  • Publication number: 20220178800
    Abstract: The present disclosure provides a method for determining free radicals of CaO—Al2O3 series oxide melts. The method includes dividing the CaO—Al2O3 series oxide powder to into two aliquots by mass, putting into two identical corundum crucibles and tamping. The method also includes heating the two aliquots at the same high temperature in furnaces with and without a static magnetic field, respectively. Cylindrical samples with the same diameter and height, and only containing the melt at the bottom of the crucible and the slag reaction interface are drilled out from said two crucibles and ground into powder samples. The free radical relative content of the CaO—Al2O3 series oxide melts can be calculated from a ratio between the difference of the reaction mass contents of CaO in the two powder samples and the total mass content of CaO.
    Type: Application
    Filed: August 6, 2021
    Publication date: June 9, 2022
    Applicant: Wuhan University of Science and Technology
    Inventors: Ao HUANG, Shenghao LI, Huazhi GU, Lvping FU, Meijie ZHANG
  • Publication number: 20220089497
    Abstract: The present disclosure relates to a magnesium-based raw material with low thermal conductivity and low thermal expansion and a preparation method thereof. According to the technical solution, 40-60 wt % fused magnesia particles, 30-40 wt % fine monoclinic zirconia powder, 5-20 wt % fine zirconium oxychloride powder, 0.5-1.5 wt % calcium hydroxide nanopowder, 0.2-0.5 wt % calcium hydroxide nanopowder, and 0.1-0.3 wt % maleic acid are stirred for 15 min to mix well in a high-speed mixing mill at a constant temperature of 25° C. to obtain a mixed powder; and the mixed powder is mixed through a ball mill at a constant temperature of 25° C. for 3 min, roasted in a high temperature furnace at 250-400° C. for 0.5-3 h, and finally cooled to room temperature. The magnesium-based refractory material prepared has the advantages of relatively low thermal conductivity, low thermal expansion coefficient, excellent dispersibility, and strong resistance to slag penetration and erosion.
    Type: Application
    Filed: June 12, 2021
    Publication date: March 24, 2022
    Applicant: WUHAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Ao HUANG, Yanzhu HUO, Huazhi GU, Yongshun ZOU, Lvping FU, Meijie ZHANG
  • Publication number: 20220002795
    Abstract: The present invention provides methods, devices and systems for sequencing and/or analyzing a polymer and/or polymer unit. The polymer may include but not limited to DNA, RNA, a polysaccharide, or a protein. The device includes a nano-pen, which is a bifunctional nanopore/nanoelectrode, and a second electrode. The nano-pen electrode and the second electrode form a tunnel gap. Polymers passing through the nano-pen nanopore will be directed to the tunnel gap between electrodes. The electrodes are functionalized with a recognition reagent, and the reagent can transiently bind each polymer unit during its passage. When the transient bond forms, distinctive current signals are detected and recorded. The signals are utilized to analyze and identify the polymer and/or polymer unit.
    Type: Application
    Filed: July 6, 2020
    Publication date: January 6, 2022
    Inventors: Shuai Chang, Feng Liang, Huazhi Gu, Mingzhu Huang, Lei Yu
  • Publication number: 20210384426
    Abstract: The disclosure relates to a phase change thermal storage ceramic having high service temperature and improved utilization rate and utilization efficiency of heat. It is prepared at a low cost with a simple, easy-to-industrially-realized method. A mixture is obtained by mixing and stirring evenly 50-85 wt % of fused mullite powder, 10-45 wt % of pretreated aluminum-silicon alloy powder, and 3-8 wt % of ball clay. A ceramic body is formed by press molding the mixture at 80-150 MPa. The ceramic body is cured at 25-28° C. and a relative humidity of 70-75 RH for 24-36 h, dried at 80-120° C. for 24-36 h, and held at 1,100-1,300° C. for 3-5 h to prepare the phase change thermal storage ceramic. The pretreated aluminum-silicon alloy powder is prepared by holding aluminum-silicon alloy powder in water vapor at 0.02-0.20 MPa for 0.5-3 h to impregnate in an alkaline silica sol and drying the impregnated powder.
    Type: Application
    Filed: February 4, 2021
    Publication date: December 9, 2021
    Applicant: Wuhan University of Science and Technology
    Inventors: Meijie Zhang, Cangjuan Han, Huazhi Gu, Ao Huang, Lvping Fu
  • Publication number: 20210284579
    Abstract: A titanium-containing calcium hexaaluminate material and preparation method thereof is disclosed. The technical solution is: using 60˜80 wt % alumina micro powder, 5˜20 wt % calcium-containing micro powder, 10˜20 wt % titania micro powder and 1˜10 wt % manganese oxide micro powder as raw materials, blending the raw materials evenly in a planetary ball mill to obtain a blend, machine pressing the blend at 100˜200 MPa to obtain a green body, drying the green body at 110˜200° C. for 12˜36 h, and incubating the dried green body at 1500˜1800° C. for 1˜8 h to obtain the titanium-containing calcium hexaaluminate material. The present disclosure has low cost and simple process, and the prepared titanium-containing calcium hexaaluminate material has the characteristics of good chemical stability, high thermal shock resistance and strong melt resistance to titanium-aluminum alloy.
    Type: Application
    Filed: March 8, 2021
    Publication date: September 16, 2021
    Applicant: Wuhan University of Science and Technology
    Inventors: Lvping Fu, Huazhi Gu, Ao Huang, Meijie Zhang
  • Publication number: 20210278142
    Abstract: A double-shell phase change heat storage balls and preparation method thereof is disclosed. The technical scheme is as follows. Paraffin is placed in oven, and organic ignition loss is added to obtain paraffin melt containing the ignition loss; metal balls is immersed in the paraffin melt containing the ignition loss, and cooled naturally to obtain the metal balls coated by ignition loss and paraffin; alumina refractory slurry is placed in a pan granulator, and the metal balls coated by ignition loss and paraffin is added, pelletized, and dried to obtain alumina composite phase change heat storage ball bodies; mullite refractory slurry is placed in a pan granulator, alumina composite phase change heat storage ball bodies is added, pelletized, dried, and placed in a muffle furnace. The temperature is raised to 1200-1600° C. by three systems and maintained. After naturally cooling, the double-shell phase change heat storage balls are prepared.
    Type: Application
    Filed: May 26, 2021
    Publication date: September 9, 2021
    Inventors: Huazhi Gu, Qiulin Xia, Meijie Zhang, Ao Huang, Lvping Fu, Fengming Zhou, Haifeng Li
  • Publication number: 20210183271
    Abstract: The disclosure relates to a method for simulating intraplate volcanism. A technical solution is: mixing 47-60 wt % of calcium oxide powder, 35 wt % of alumina powder and 5-18 wt % of silica powder uniformly to obtain a mixed powder; putting the mixed powder in a corundum crucible, placing the crucible in a high-temperature furnace provided with an observation window outside which an industrial camera with a depression angle of 30-45° is provided, heating to 1,500-1,900° C. at a rate of 1-30° C./min under an air atmosphere at a normal pressure, holding for 0.5-5 h; recording intraplate volcanism formed by upwelling of a melt of the mixed powder along an inner wall of the crucible during the holding with the industrial camera to obtain a simulated process of the intraplate volcanism.
    Type: Application
    Filed: November 13, 2020
    Publication date: June 17, 2021
    Applicant: Wuhan University Of Science and Technology
    Inventors: Ao HUANG, Yongshun ZOU, Huazhi GU
  • Publication number: 20210172730
    Abstract: The disclosure relates to a method for fabricating a speckle for high temperature deformation measurement of a shaped refractory material. A technical solution includes mixing a hercynite micropowder and a liquid mixing agent in a mass ratio of (3-6):1, and ultrasonically treating to obtain a speckle mixture; polishing a surface of a shaped refractory material to be measured, removing impurities, and spraying the speckle mixture on the surface of the shaped refractory material to be measured with a pneumatic airbrush in a time hood to obtain an uncured speckle; heating the uncured speckle to 60-80° C., keeping for 1-3 h, then heating to 100-120° C., and keeping for 1-3 h to obtain a speckle for high temperature deformation measurement of a shaped refractory material. The fabricated product is suitable for high temperature deformation measurement of a shaped refractory material at 1,600° C.
    Type: Application
    Filed: November 9, 2020
    Publication date: June 10, 2021
    Applicant: Wuhan University of Science and Technology
    Inventors: Ao HUANG, Shenghao LI, Huazhi GU, Lvping FU, Yajie DAI
  • Publication number: 20210121944
    Abstract: A spiral-orifice ceramic filter for metal casting, including spiral channels and two drain openings, where the spiral channels are distributed in a ceramic substrate in a staggered manner. By adoption of the spiral channel structure, molten metal may rotate to generate a centrifugal force while flowing forwards so as to promote separation of inclusions. The spiral-orifice ceramic filter for metal casting includes the following components: 90-95 wt % of MgO, 4-8 wt % of SiO2 and 2-4 wt % of ZrO2. Therefore, the spiral-orifice ceramic filter for metal casting has high strength under normal temperature and optional thermal impact resistance under high temperature, and may tolerate the impact of molten metal at 1700° C. or higher without break. The ceramic substrate and the spiral channel are superficially coated with one layer of functional oxide prepared from CaO.2Al2O3, CaO.6Al2O3, Al2O3, TiO2, or Re2O3.
    Type: Application
    Filed: August 10, 2020
    Publication date: April 29, 2021
    Inventors: Guangqiang LI, Qiang WANG, Yu LIU, Ao HUANG, Wen YAN, Wan ZHENG, Huazhi GU
  • Patent number: 10519065
    Abstract: A lightweight micro-closed-pore corundum composite refractory and a method preparing the same, wherein raw materials of the refractory comprise 95-99 parts by weight of ?-Al2O3 micro-powder and 1-5 parts by weight of dolomite clinker; and additives of the refractory comprise 2-15 parts by weight of nano alumina sol, 5-15 parts by weight of a carbohydrate polymer, and 30-50 parts by weight of an organic alcohol. and the lightweight micro-closed-pore corundum composite refractory is prepared by: mixing and wet grinding the raw materials and the additives to obtain a slurry; placing the slurry in a mold, keeping the mold at 15-25° C. for 6-12 hours and then keeping the mold at 60-90° C. for 6-12 hours, then demolding; drying a demolded green body at 110-200° C. for 24-36 hours, and keeping the green body at 1800-2000° C. for 2-5 hours. A method preparing a lightweight micro-closed-pore corundum composite refractory is also provided.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: December 31, 2019
    Assignee: Wuhan University of Science and Technology
    Inventors: Huazhi Gu, Ao Huang, Lvping Fu, Meijie Zhang, Nan Li
  • Publication number: 20190017989
    Abstract: The present invention relates to a tunnel recognition technology-based nano-detection device and method. The said detection device consists of nano wand, plane electrode, active power and current tester. The said detection method consists of the following steps: Place the said nano wand into the test solution with a specific DNA or RNA sequence, and place the said plane electrode on the surface of the said test solution; import the said DNA or RNA sequence into the said transmission pipeline; detect and record the current change displayed by the said current tester; read the base signal of the said DNA or RNA sequence based on the said current change detected. The technical scheme of the present invention is based on DNA sequence direct reading techniques, characterized by quick reading and high accuracy.
    Type: Application
    Filed: September 13, 2018
    Publication date: January 17, 2019
    Inventors: SHUAI CHANG, JIN HE, FENG LIANG, MINGZHU HUANG, HUAZHI GU
  • Publication number: 20180319710
    Abstract: A lightweight micro-closed-pore corundum composite refractory and a method preparing the same, wherein raw materials of the refractory comprise 95-99 parts by weight of ?-Al2O3 micro-powder and 1-5 parts by weight of dolomite clinker; and additives of the refractory comprise 2-15 parts by weight of nano alumina sol, 5-15 parts by weight of a carbohydrate polymer, and 30-50 parts by weight of an organic alcohol. and the lightweight micro-closed-pore corundum composite refractory is prepared by: mixing and wet grinding the raw materials and the additives to obtain a slurry; placing the slurry in a mold, keeping the mold at 15-25° C. for 6-12 hours and then keeping the mold at 60-90° C. for 6-12 hours, then demolding; drying a demolded green body at 110-200° C. for 24-36 hours, and keeping the green body at 1800-2000° C. for 2-5 hours. A method preparing a lightweight micro-closed-pore corundum composite refractory is also provided.
    Type: Application
    Filed: December 16, 2016
    Publication date: November 8, 2018
    Inventors: Huazhi GU, Ao HUANG, Lvping FU, Meijie ZHANG, Nan LI