Patents by Inventor Hubert Grimm

Hubert Grimm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9903920
    Abstract: A magnetic field sensor apparatus is provided for measuring one magnetic field vector component He. The apparatus includes at least one anisotropic magneto-resistive resistor device (AMR resistor device) on a chip substrate, where the resistor device includes a plurality of magneto-resistive AMR resistor elements which are connected in series by electrically conductive strips. At least one permanent-magnetic magnetization element with a magnetization axis is assigned to each resistor element in such a way that the resistor element is passed through by an initial magnetization field H0 of the magnetization element in the direction of the magnetization axis. A measurement current IS flowing through the resistor element from a contact region between a first conductive strip and the resistor element to a contact region between the resistor element and a second conductive strip has a mean current direction axis at a predefined linearization angle ?>0° and ?<90° relative to the magnetization axis.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: February 27, 2018
    Assignee: SENSITEC GMBH
    Inventors: Hubert Grimm, Viktor Spetter
  • Publication number: 20160146907
    Abstract: A magnetic field sensor apparatus is provided for measuring one magnetic field vector component He. The apparatus includes at least one anisotropic magneto-resistive resistor device (AMR resistor device) on a chip substrate, where the resistor device includes a plurality of magneto-resistive AMR resistor elements which are connected in series by electrically conductive strips. At least one permanent-magnetic magnetization element with a magnetization axis is assigned to each resistor element in such a way that the resistor element is passed through by an initial magnetization field H0 of the magnetization element in the direction of the magnetization axis. A measurement current IS flowing through the resistor element from a contact region between a first conductive strip and the resistor element to a contact region between the resistor element and a second conductive strip has a mean current direction axis at a predefined linearization angle ?>0° and ?<90° relative to the magnetization axis.
    Type: Application
    Filed: April 23, 2014
    Publication date: May 26, 2016
    Applicant: SENSITEC GMBH
    Inventors: Hubert GRIMM, Viktor SPETTER
  • Patent number: 8274277
    Abstract: A high-resolution magnetic encoder system includes a magnetic resistive sensor, a fixed suspension, and a mechanism. The magnetic resistive sensor is mounted to the fixed suspension above a magnetic medium having at least one magnetic track. The fixed suspension is attached to the mechanism, such as a housing, a substrate, and/or an electronic board. The sensor is adapted to perform a relative movement with respect to and in close contact to the surface of the magnetic medium. The magnetic medium may be protected by an overcoat layer. The magnetic resistive sensor may be Giant Magnetic-Resistive (GMR) sensor and/or a Tunneling Magnetic-Resistive Sensor (TMR).
    Type: Grant
    Filed: August 29, 2009
    Date of Patent: September 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Andreas Dietzel, Marcus Breuer, Hubert Grimm, Karl-Heinz Lehnhert, Nikolaus Luckner, Rolf Schaefer, Guenther Michaelis
  • Patent number: 7924534
    Abstract: A magnetic sensor having at least a first and at least a second structure of soft-magnetic material that are spatially separated and define a first gap therebetween. The first and second structure of soft-magnetic material are adapted to form a gap magnetic field pointing in a direction substantially perpendicular to the elongation of the first gap in the vicinity of the first gap in response to an external magnetic field. Additionally, the magnetic sensor comprises at least a first magnetoresistive layered structure that is positioned in the vicinity of the first gap including inside the first gap and that is sensitive to the gap magnetic field.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: April 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hubert Grimm, Jan Marien, Rolf Schaefer
  • Patent number: 7728585
    Abstract: A system for use when measuring a magnetostriction value of a magnetoresistive element according to one embodiment includes a mechanism for applying a first magnetic field about parallel to a substrate having one or more magnetoresistive elements, and for applying a second magnetic field about perpendicular to the substrate and about parallel to magnetoresistive layers of the elements; and a mechanism for applying a mechanical stress to the substrate during application of the magnetic fields.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventor: Hubert Grimm
  • Publication number: 20100045270
    Abstract: A high-resolution magnetic encoder system includes a magnetic resistive sensor, a fixed suspension, and a mechanism. The magnetic resistive sensor is mounted to the fixed suspension above a magnetic medium having at least one magnetic track. The fixed suspension is attached to the mechanism, such as a housing, a substrate, and/or an electronic board. The sensor is adapted to perform a relative movement with respect to and in close contact to the surface of the magnetic medium. The magnetic medium may be protected by an overcoat layer. The magnetic resistive sensor may be Giant Magnetic-Resistive (GMR) sensor and/or a Tunneling Magnetic-Resistive Sensor (TMR).
    Type: Application
    Filed: August 29, 2009
    Publication date: February 25, 2010
    Inventors: Andreas Dietzel, Marcus Breuer, Hubert Grimm, Karl-Heinz Lehnhert, Nikolaus Luckner, Rolf Schaefer, Guenther Michaelis
  • Patent number: 7612555
    Abstract: A high-resolution magnetic encoder system includes a magnetic resistive sensor, a fixed suspension, and a mechanism. The magnetic resistive sensor is mounted to the fixed suspension above a magnetic medium having at least one magnetic track. The fixed suspension is attached to the mechanism, such as a housing, a substrate, and/or an electronic board. The sensor is adapted to perform a relative movement with respect to and in close contact to the surface of the magnetic medium. The magnetic medium may be protected by an overcoat layer. The magnetic resistive sensor may be Giant Magnetic-Resistive (GMR) sensor and/or a Tunneling Magnetic-Resistive Sensor (TMR).
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: November 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Andreas Dietzel, Marcus Breuer, Hubert Grimm, Karl-Heinz Lehnhert, Nikolaus Luckner, Rolf Schaefer, Guenther Michaelis
  • Publication number: 20090161261
    Abstract: A magnetic sensor having at least a first and at least a second structure of soft-magnetic material that are spatially separated and define a first gap therebetween. The first and second structure of soft-magnetic material are adapted to form a gap magnetic field pointing in a direction substantially perpendicular to the elongation of the first gap in the vicinity of the first gap in response to an external magnetic field. Additionally, the magnetic sensor comprises at least a first magnetoresistive layered structure that is positioned in the vicinity of the first gap including inside the first gap and that is sensitive to the gap magnetic field.
    Type: Application
    Filed: July 9, 2008
    Publication date: June 25, 2009
    Inventors: Hubert Grimm, Jan Marien, Rolf Schaefer
  • Patent number: 7505233
    Abstract: A magnetic sensor having at least a first and at least a second structure of soft-magnetic material that are spatially separated and define a first gap therebetween. The first and second structure of soft-magnetic material are adapted to form a gap magnetic field pointing in a direction substantially perpendicular to the elongation of the first gap in the vicinity of the first gap in response to an external magnetic field. Additionally, the magnetic sensor comprises at least a first magnetoresistive layered structure that is positioned in the vicinity of the first gap including inside the first gap and that is sensitive to the gap magnetic field.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: March 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Hubert Grimm, Jan Marien, Rolf Schaefer
  • Patent number: 7471082
    Abstract: A system for use when measuring a magnetostriction value of a magnetoresistive element according to one embodiment includes a mechanism for applying a first magnetic field about parallel to a substrate having one or more magnetoresistive elements, and for applying a second magnetic field about perpendicular to the substrate and about parallel to magnetoresistive layers of the elements; a mechanism for applying a mechanical stress to the substrate during application of the magnetic fields; and a measuring subsystem for measuring a signal from at least one of the magnetoresistive elements, wherein the second magnetic field is a magnetic alternating field, wherein the measuring subsystem is locked to a frequency of the alternating field.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: December 30, 2008
    Assignee: International Business Machines Corporation
    Inventor: Hubert Grimm
  • Publication number: 20080278153
    Abstract: A system for use when measuring a magnetostriction value of a magnetoresistive element according to one embodiment includes a mechanism for applying a first magnetic field about parallel to a substrate having one or more magnetoresistive elements, and for applying a second magnetic field about perpendicular to the substrate and about parallel to magnetoresistive layers of the elements; and a mechanism for applying a mechanical stress to the substrate during application of the magnetic fields.
    Type: Application
    Filed: July 25, 2008
    Publication date: November 13, 2008
    Inventor: Hubert Grimm
  • Publication number: 20080259481
    Abstract: A method of measuring an external magnetic field pointing in a first direction substantially parallel to a surface normal to an at least first magnetoresistive layered structure deposited on a planar substrate, the method comprising: applying the external magnetic field to the planar substrate having at least one structure of soft-magnetic material being adapted to at least partially deflect the external magnetic field in a direction substantially parallel to the surface of the at least first magnetoresistive layered structure, the at least one structure of soft-magnetic material being arranged in the vicinity of the at least first magnetoresistive layered structure; measuring the electrical resistance of the at least first magnetoresistive layered structure, the electrical resistance depending on the magnitude and/or direction of magnetic field being deflected by the at least one structure of soft-magnetic material, and determining at least one of the magnitude and direction of the external magnetic field us
    Type: Application
    Filed: July 9, 2008
    Publication date: October 23, 2008
    Inventors: Hubert Grimm, Jan Marien, Rolf Schaefer
  • Patent number: 7405556
    Abstract: A magnetic encoder system according to one embodiment includes a magnetic sensor mounted on a first substrate above a magnetic medium, the magnetic medium carrying at least one magnetic track, the sensor detecting changes in the magnetic track during a relative movement between the sensor and the magnetic medium. The first substrate is provided with a second substrate rotatably engaging the magnetic medium.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: July 29, 2008
    Assignee: International Business Machines Corporation
    Inventors: Marcus Breuer, Hubert Grimm, Hans-Guenter Kraemer, Nikolaus Luckner
  • Patent number: 7375513
    Abstract: A method for measuring a magnetostriction value of a magnetoresistive element according to one embodiment includes placing a substrate carrying one or more magnetoresistive elements on a fixture; applying a first magnetic field about parallel to the substrate; applying a second magnetic field about perpendicular to the substrate and about parallel to magnetoresistive layers of the one or more elements; measuring a signal from at least one of the one or more elements; applying a mechanical stress to the substrate; and monitoring the signal from the at least one of the one or more elements while changing the first magnetic field.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: May 20, 2008
    Assignee: International Business Machines Corporation
    Inventor: Hubert Grimm
  • Publication number: 20080024123
    Abstract: A method for measuring a magnetostriction value of a magnetoresistive element according to one embodiment includes placing a substrate carrying one or more magnetoresistive elements on a fixture; applying a first magnetic field about parallel to the substrate; applying a second magnetic field about perpendicular to the substrate and about parallel to magnetoresistive layers of the one or more elements; measuring a signal from at least one of the one or more elements; applying a mechanical stress to the substrate; and monitoring the signal from the at least one of the one or more elements while changing the first magnetic field.
    Type: Application
    Filed: October 1, 2007
    Publication date: January 31, 2008
    Inventor: Hubert Grimm
  • Publication number: 20080024124
    Abstract: A system for use when measuring a magnetostriction value of a magnetoresistive element according to one embodiment includes a mechanism for applying a first magnetic field about parallel to a substrate having one or more magnetoresistive elements, and for applying a second magnetic field about perpendicular to the substrate and about parallel to magnetoresistive layers of the elements; and a mechanism for applying a mechanical stress to the substrate during application of the magnetic fields.
    Type: Application
    Filed: October 1, 2007
    Publication date: January 31, 2008
    Inventor: Hubert Grimm
  • Publication number: 20070268017
    Abstract: A high-resolution magnetic encoder system includes a magnetic resistive sensor, a fixed suspension, and a mechanism. The magnetic resistive sensor is mounted to the fixed suspension above a magnetic medium having at least one magnetic track. The fixed suspension is attached to the mechanism, such as a housing, a substrate, and/or an electronic board. The sensor is adapted to perform a relative movement with respect to and in close contact to the surface of the magnetic medium. The magnetic medium may be protected by an overcoat layer. The magnetic resistive sensor may be Giant Magnetic-Resistive (GMR) sensor and/or a Tunneling Magnetic-Resistive Sensor (TMR).
    Type: Application
    Filed: October 29, 2004
    Publication date: November 22, 2007
    Inventors: Andreas Dietzel, Marcus Breuer, Hubert Grimm, Karl-Heinz Lehnhert, Nikolaus Luckner, Rolf Schaefer, Guenther Michaelis
  • Patent number: 7298139
    Abstract: A system for directly measuring a magnetostriction value of a magnetoresistive element includes a fixture for receiving a substrate carrying one or more magnetoresistive elements. A magnet assembly applies a first magnetic field parallel to the substrate, and a magnetic alternating field perpendicular to the substrate and parallel to magnetoresistive layers of the elements. A stress-inducing mechanism applies a mechanical stress to the substrate, the stress being oriented parallel to the substrate. A measuring subsystem measures a signal from at least one of the magnetoresistive elements.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: November 20, 2007
    Assignee: International Business Machines Corporation
    Inventor: Hubert Grimm
  • Publication number: 20070019336
    Abstract: A magnetic encoder system according to one embodiment includes a magnetic sensor mounted on a first substrate above a magnetic medium, the magnetic medium carrying at least one magnetic track, the sensor detecting changes in the magnetic track during a relative movement between the sensor and the magnetic medium. The first substrate is provided with a second substrate rotatably engaging the magnetic medium.
    Type: Application
    Filed: September 29, 2006
    Publication date: January 25, 2007
    Inventors: Marcus Breuer, Hubert Grimm, Hans-Guenter Kraemer, Nikolaus Luckner
  • Patent number: 7141965
    Abstract: A magnetic encoder system according to one embodiment includes a magnetic sensor mounted on a first substrate above a magnetic medium, the magnetic medium carrying at least one magnetic track, the sensor detecting changes in the magnetic track during a relative movement between the sensor and the magnetic medium. The first substrate is provided with a second substrate rotatably engaging the magnetic medium.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: November 28, 2006
    Assignee: International Business Machines Corporation
    Inventors: Marcus Breuer, Hubert Grimm, Hans-Guenter Kraemer, Nikolaus Luckner