Patents by Inventor Hudong Chen

Hudong Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11907625
    Abstract: Disclosed are computer implemented techniques for conducting a fluid simulation of a porous medium. These techniques involve retrieving a representation of a three dimensional porous medium, the representation including pore space corresponding to the porous medium, with the representation including at least one portion of under-resolved pore structure in the porous medium, defining a representative flow model that includes the under-resolved pore structure in the representation, and constructing by the computer system fluid force curves that correspond to fluid forces in the under-resolved pore structure in the representation.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: February 20, 2024
    Assignee: Dassault Systemes Americas Corp.
    Inventors: Hiroshi Otomo, Rafael Salazar Tio, Hudong Chen, Raoyang Zhang, Andrew Fager, Ganapathi Raman Balasubramanian, Bernd Crouse, Hongli Fan, Jingjing Yang
  • Patent number: 11847391
    Abstract: Described are computer implemented techniques for simulating elements of a fluid flow. These techniques include storing in a memory state vectors for a plurality of voxels, the state vectors comprising a plurality of entries that correspond to particular momentum states of a plurality of possible momentum states at a voxel, storing in a memory a representation of at least one surface that is sized and oriented independently of the size and orientation of the voxels, perform interaction operations on the state vectors, the interaction operations modelling interactions between elements of different momentum states, perform surface interaction operations on the representation of the surface, the surface interaction operations modelling interactions between the surface and substantially all elements of voxels, and performing move operations on the state vectors to reflect movement of elements to new voxels.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: December 19, 2023
    Assignee: Dassault Systemes Simulia Corp.
    Inventors: Pradeep Gopalakrishnan, Raoyang Zhang, Hudong Chen, Junye Wang, Avinash Jammalamadaka
  • Patent number: 11763048
    Abstract: Computer implemented techniques for simulating a fluid flow about a surface of a solid, include receiving a coordinate system for representation of a curvilinear mesh that conforms to the surface of the solid, simulating, with a lattice velocity set transport of particles in a volume of fluid, with the transport causing collision among the particles, executing a distribution function for transport of the particles, with the distribution function including a particle collision determination and a change in particle distribution associated with the curvilinear mesh, performing by the computing system, advection operations in the coordinate system under constraints applied to particle momentum values and mapping by the computer system values resulting from simulating onto the curvilinear mesh by translation of the particle momentum values and spatial coordinates determined in the coordinate system into momentum and spatial values in the curvilinear space.
    Type: Grant
    Filed: December 5, 2022
    Date of Patent: September 19, 2023
    Assignee: Dassault Systemes Simulia Corp.
    Inventors: Hudong Chen, Raoyang Zhang, Pradeep Gopalakrishnan
  • Patent number: 11645433
    Abstract: Computer implemented techniques for simulating a fluid flow about a surface of a solid are disclosed. These techniques involve receiving a model of a simulation space including a lattice structure represented as a collection of voxels and a representation of a physical object, with the voxels having appropriate resolutions to account for surfaces of the physical object. The techniques also involve simulating movement of particles in a volume of fluid, with the movement of the particles causing collisions among the particles, identifying faces between two voxels where at least one of the faces violates a stability condition, computing a modified flux using a spatially averaged gradient in the vicinity of the two voxels where the at least one of the faces violates the stability condition, and performing by the computing system, advection operations on the particles to subsequent voxels.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: May 9, 2023
    Assignee: Dassault Systemes Simulia Corp.
    Inventors: Nagendra Krishnamurthy, Luca D'Alessio, Raoyang Zhang, Hudong Chen
  • Publication number: 20230108734
    Abstract: Computer implemented techniques for simulating a fluid flow about a surface of a solid, include receiving a coordinate system for representation of a curvilinear mesh that conforms to the surface of the solid, simulating, with a lattice velocity set transport of particles in a volume of fluid, with the transport causing collision among the particles, executing a distribution function for transport of the particles, with the distribution function including a particle collision determination and a change in particle distribution associated with the curvilinear mesh, performing by the computing system, advection operations in the coordinate system under constraints applied to particle momentum values and mapping by the computer system values resulting from simulating onto the curvilinear mesh by translation of the particle momentum values and spatial coordinates determined in the coordinate system into momentum and spatial values in the curvilinear space.
    Type: Application
    Filed: December 5, 2022
    Publication date: April 6, 2023
    Inventors: Hudong Chen, Raoyang Zhang, Pradeep Gopalakrishnan
  • Patent number: 11544423
    Abstract: Computer implemented techniques for simulating a fluid flow about a surface of a solid, include receiving a coordinate system for representation of a curvilinear mesh that conforms to the surface of the solid, simulating, with a lattice velocity set transport of particles in a volume of fluid, with the transport causing collision among the particles, executing a distribution function for transport of the particles, with the distribution function including a particle collision determination and a change in particle distribution associated with the curvilinear mesh, performing by the computing system, advection operations in the coordinate system under constraints applied to particle momentum values and mapping by the computer system values resulting from simulating onto the curvilinear mesh by translation of the particle momentum values and spatial coordinates determined in the coordinate system into momentum and spatial values in the curvilinear space.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: January 3, 2023
    Assignee: Dassault Systemes Simulia Corp.
    Inventors: Hudong Chen, Raoyang Zhang, Pradeep Gopalakrishnan
  • Patent number: 11379636
    Abstract: Techniques for simulating fluid flow using a lattice Boltzmann (LB) approach for solving scalar transport equations and solving for total energy are described. In addition to the lattice Boltzmann functions for fluid flow the techniques include modifying a set of state vectors of the particles by adding specific total energy to states of particles that will be advected and subtracting the specific total energy from states of particles that will not be advected over a time interval and performing advection of the particles according to the modified set of states.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: July 5, 2022
    Assignee: Dassault Systemes Simulia Corp.
    Inventors: Pradeep Gopalakrishnan, Hudong Chen, Raoyang Zhang, Avinash Jammalamadaka, Yanbing Li
  • Publication number: 20220207219
    Abstract: Disclosed are computer implemented techniques for conducting a fluid simulation of a porous medium. These techniques involve retrieving a representation of a three dimensional porous medium, the representation including pore space corresponding to the porous medium, with the representation including at least one portion of under-resolved pore structure in the porous medium, defining a representative flow model that includes the under-resolved pore structure in the representation, and constructing by the computer system fluid force curves that correspond to fluid forces in the under-resolved pore structure in the representation.
    Type: Application
    Filed: December 29, 2020
    Publication date: June 30, 2022
    Inventors: Hiroshi Otomo, Rafael Salazar Tio, Hudong Chen, Raoyang Zhang, Andrew Fager, Ganapathi Raman Balasubramanian, Bernd Crouse, Hongli Fan, Jingjing Yang
  • Publication number: 20220188485
    Abstract: Techniques for simulating fluid flow using a lattice Boltzmann (LB) approach for solving scalar transport equations and solving for total energy are described. In addition to the lattice Boltzmann functions for fluid flow the techniques include modifying a set of state vectors of the particles by adding specific total energy to states of particles that will be advected and subtracting the specific total energy from states of particles that will not be advected over a time interval and performing advection of the particles according to the modified set of states.
    Type: Application
    Filed: March 8, 2022
    Publication date: June 16, 2022
    Inventors: Pradeep Gopalakrishnan, Hudong Chen, Raoyang Zhang, Avinash Jammalamadaka, Yanbing Li
  • Publication number: 20210406434
    Abstract: Described are computer implemented techniques for simulating elements of a fluid flow. These techniques include storing in a memory state vectors for a plurality of voxels, the state vectors comprising a plurality of entries that correspond to particular momentum states of a plurality of possible momentum states at a voxel, storing in a memory a representation of at least one surface that is sized and oriented independently of the size and orientation of the voxels, perform interaction operations on the state vectors, the interaction operations modelling interactions between elements of different momentum states, perform surface interaction operations on the representation of the surface, the surface interaction operations modelling interactions between the surface and substantially all elements of voxels, and performing move operations on the state vectors to reflect movement of elements to new voxels.
    Type: Application
    Filed: June 29, 2020
    Publication date: December 30, 2021
    Inventors: Pradeep Gopalakrishnan, Raoyang Zhang, Hudong Chen, Junye Wang, Avinash Jammalamadaka
  • Patent number: 11194941
    Abstract: A method comprising: simulating, in a lattice velocity set, movement of particles in a volume of fluid, with the movement causing collision among the particles; based on the simulated movement, determining relative particle velocity of a particle at a particular location within the volume, with the relative particle velocity being a difference between (i) an absolute velocity of the particle at the particular location within the volume and measured under zero flow of the volume, and (ii) a mean velocity of one or more of the particles at the particular location within the volume; and determining, based on the relative particle velocity, a non-equilibrium post-collide distribution function of a specified order that is representative of the collision.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: December 7, 2021
    Assignee: Dassault Systemes Simulia Corp.
    Inventors: Hudong Chen, Raoyang Zhang, Pradeep Gopalakrishnan
  • Patent number: 11188692
    Abstract: Disclosed are techniques for performing a flow simulation that include storing in a memory state vectors for a plurality of voxels, the state vectors comprising a plurality of entries that correspond to particular momentum states of a plurality of possible momentum states at a voxel. The techniques also include storing in a memory a representation of at least one surface and performing interaction operations on the state vectors, the interaction operations modelling interactions between elements of different momentum states. The techniques also include performing surface interaction operations which model interactions between the surface and elements of at least one voxel near the surface, including modeling a wall shear stress direction that is not parallel to a flow velocity direction and performing move operations on the state vectors to reflect movement of elements to new voxels.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: November 30, 2021
    Assignee: Dassault Systemes Simulia Corp.
    Inventors: Hudong Chen, Raoyang Zhang, Yanbing Li
  • Patent number: 11118449
    Abstract: This description relates to computer simulation of physical processes, such as computer simulation of multi-species flow through porous media including the determination/estimation of relative permeabilities for the multi-species flow through the porous media.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: September 14, 2021
    Assignee: Dassault Systemes Simulia Corp.
    Inventors: Bernd Crouse, Xiaobo Nie, Raoyang Zhang, Yong Li, Hiroshi Otomo, Hudong Chen, Andrew Fager
  • Patent number: 11042674
    Abstract: The description describes one or more processing devices and one or more hardware storage devices storing instructions that are operable, when executed by the one or more processing devices, to cause the one or more processing devices to perform operations including modeling the porous material as a two-dimensional interface, in a simulation space, in which fluid flows and sound waves travel through the porous material and experience pressure and acoustic losses. The operations also include simulating, in the simulation space, fluid flow and propagation of sound waves, the activity of the fluid being simulated so as to simulate movement of elements within the simulation space and across the interface, where the simulation of the movement of the elements across the interface is governed by the model.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: June 22, 2021
    Assignee: Dassault Systemes Simulia Corp.
    Inventors: Adrien Mann, Chenghai Sun, Hudong Chen, Raoyang Zhang, Franck Léon Pérot
  • Publication number: 20210133374
    Abstract: Disclosed are techniques for scalar solvers in flow simulations that include simulating using a scalar lattice velocity set in a computing system, movement of scalar particles representing a scalar quantity in a volume of fluid, with the scalar particles carried by flow particles of the volume of fluid, and with the movement of the scalar particles causing collisions among the scalar particles; and evaluating, a non-equilibrium post-collide scalar distribution function of a specified order that is representative of the scalar collision.
    Type: Application
    Filed: August 7, 2020
    Publication date: May 6, 2021
    Inventors: Pradeep Gopalakrishnan, Raoyang Zhang, Hudong Chen, Avinash Jammalamadaka
  • Publication number: 20200394277
    Abstract: Computer implemented techniques for simulating a fluid flow about a surface of a solid are disclosed. These techniques involve receiving a model of a simulation space including a lattice structure represented as a collection of voxels and a representation of a physical object, with the voxels having appropriate resolutions to account for surfaces of the physical object. The techniques also involve simulating movement of particles in a volume of fluid, with the movement of the particles causing collisions among the particles, identifying faces between two voxels where at least one of the faces violates a stability condition, computing a modified flux using a spatially averaged gradient in the vicinity of the two voxels where the at least one of the faces violates the stability condition, and performing by the computing system, advection operations on the particles to subsequent voxels.
    Type: Application
    Filed: November 18, 2019
    Publication date: December 17, 2020
    Inventors: Nagendra Krishnamurthy, Luca D'Alessio, Raoyang Zhang, Hudong Chen
  • Patent number: 10867088
    Abstract: A method comprising: simulating, in a lattice velocity set, movement of particles in a volume of fluid, with the movement causing collision among the particles; based on the simulated movement, determining relative particle velocity of a particle at a particular location within the volume, with the relative particle velocity being a difference between (i) an absolute velocity of the particle at the particular location within the volume and measured under zero flow of the volume, and (ii) a mean velocity of one or more of the particles at the particular location within the volume; and determining, based on the relative particle velocity, a non-equilibrium post-collide distribution function of a specified order that is representative of the collision.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: December 15, 2020
    Assignee: Dassault Systemes Simulia Corp.
    Inventors: Hudong Chen, Raoyang Zhang, Pradeep Gopalakrishnan
  • Patent number: 10831952
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing data representing the effect of tortuosity on the acoustic behavior of a fluid in a porous medium. One of the methods includes generating by a first data processing program of the data processing apparatus, a model of acoustic behavior of a fluid in a porous medium including an effect of tortuosity, with the model comprising a time variable indicative of a sound speed of the fluid. The method includes rescaling the time variable of the model based on the sound speed in a fluid in the porous medium. The method also includes simulating the acoustic behavior including the effect of tortuosity of the porous medium based on the rescaling of the time-related variables within the model.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: November 10, 2020
    Assignee: Dassault Systemes Simulia Corp.
    Inventors: Chenghai Sun, Franck Léon Pérot, Raoyang Zhang, Hudong Chen, David M. Freed, Ilya Staroselsky, Adrien Mann
  • Publication number: 20200285709
    Abstract: Disclosed are techniques for performing a flow simulation that include storing in a memory state vectors for a plurality of voxels, the state vectors comprising a plurality of entries that correspond to particular momentum states of a plurality of possible momentum states at a voxel. The techniques also include storing in a memory a representation of at least one surface and performing interaction operations on the state vectors, the interaction operations modelling interactions between elements of different momentum states. The techniques also include performing surface interaction operations which model interactions between the surface and elements of at least one voxel near the surface, including modeling a to wall shear stress direction that is not parallel to a flow velocity direction and performing move operations on the state vectors to reflect movement of elements to new voxels.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 10, 2020
    Inventors: Hudong Chen, Raoyang Zhang, Yanbing Li
  • Publication number: 20200285710
    Abstract: Disclosed are techniques for performing a flow simulation that include storing in a memory state vectors for a plurality of voxels, the state vectors comprising a plurality of entries that correspond to particular momentum states of a plurality of possible momentum states at a voxel. The techniques also include storing in a memory a representation of at least one surface and performing interaction operations on the state vectors, the interaction operations modelling interactions between elements of different momentum states. The techniques also include performing surface interaction operations which model interactions between the surface and elements of at least one voxel near the surface, including modeling a to wall shear stress direction that is not parallel to a flow velocity direction and performing move operations on the state vectors to reflect movement of elements to new voxels.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 10, 2020
    Inventors: Hudong Chen, Raoyang Zhang, Yanbing Li