Patents by Inventor Hue Khac Trinh

Hue Khac Trinh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220255431
    Abstract: A direct-current to direct-current (DC-DC) converter circuit is provided. The DC-DC converter circuit is capable of generating a DC output voltage in a defined voltage range based on an input voltage. The DC-DC converter circuit can include a modulator circuit, an output filter circuit, and a compensator circuit. In a non-limiting example, the output filter circuit includes an inductor-capacitor (LC) circuit formed by an inductor and a multi-layer ceramic capacitor (MLCC). Notably, the MLCC can produce a variable capacitance in the defined voltage range due to inherent DC bias instability, thus risking stability of the DC-DC converter circuit. As such, a control circuit is configured to determine a configurable transconductance based on feedback of the output voltage and control the compensator circuit to operate accordingly. As such, it may be possible to mitigate the effect of MLCC capacitance variation, thus helping to maintain stability of the DC-DC converter circuit.
    Type: Application
    Filed: July 17, 2020
    Publication date: August 11, 2022
    Inventors: Thinh Ba Nguyen, Hue Khac Trinh
  • Patent number: 10992173
    Abstract: An integrated circuit (IC) comprises a regulator circuit, a bootstrap control circuit, and a gate driver that drives a transistor pair in buck or boost mode to switch current through an inductor. The IC has a VIN terminal coupled to receive a voltage generated from an AC power source, a STR terminal coupled to receive a voltage from a stored power source (e.g., a capacitor bank), and a HSB terminal that is capacitively coupled to the inductor. When bucking or boosting, the regulator circuit generates VDD supply voltage from the stored power source, supplies the VDD supply voltage onto the bootstrap control circuit, and the bootstrap control circuit generates a gate driver supply voltage that is supplied to the gate driver circuit. When not bucking or boosting, voltage on the HSB terminal is maintained between a voltage threshold from the AC power source without draining the stored power source.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: April 27, 2021
    Assignee: Active-Semi, Inc.
    Inventors: Thuc Huu Lam, Khanh Quang Dinh, Tung Van Nguyen, Hue Khac Trinh
  • Patent number: 10985644
    Abstract: An integrated circuit (IC) comprises a regulator circuit, a bootstrap control circuit, and a gate driver that drives a transistor pair in buck or boost mode to switch current through an inductor. The IC has a VIN terminal coupled to receive a voltage generated from an AC power source, a STR terminal coupled to receive a voltage from a stored power source (e.g., a capacitor bank), and a HSB terminal that is capacitively coupled to the inductor. When bucking or boosting, the regulator circuit generates VDD supply voltage from the stored power source, supplies the VDD supply voltage onto the bootstrap control circuit, and the bootstrap control circuit generates a gate driver supply voltage that is supplied to the gate driver circuit. When not bucking or boosting, voltage on the HSB terminal is maintained between a voltage threshold from the AC power source without draining the stored power source.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: April 20, 2021
    Assignee: Active-Semi, Inc.
    Inventors: Thuc Huu Lam, Khanh Quang Dinh, Tung Van Nguyen, Hue Khac Trinh
  • Publication number: 20200366183
    Abstract: An integrated circuit (IC) comprises a regulator circuit, a bootstrap control circuit, and a gate driver that drives a transistor pair in buck or boost mode to switch current through an inductor. The IC has a VIN terminal coupled to receive a voltage generated from an AC power source, a STR terminal coupled to receive a voltage from a stored power source (e.g., a capacitor bank), and a HSB terminal that is capacitively coupled to the inductor. When bucking or boosting, the regulator circuit generates VDD supply voltage from the stored power source, supplies the VDD supply voltage onto the bootstrap control circuit, and the bootstrap control circuit generates a gate driver supply voltage that is supplied to the gate driver circuit. When not bucking or boosting, voltage on the HSB terminal is maintained between a voltage threshold from the AC power source without draining the stored power source.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 19, 2020
    Inventors: Thuc Huu Lam, Khanh Quang Dinh, Tung Van Nguyen, Hue Khac Trinh
  • Patent number: 10826480
    Abstract: An integrated circuit includes a gate driver circuit that controls high side and low side transistors to operate in buck or boost mode. In buck operating mode, after switching off the low side transistor, the gate driver circuit controls the high side transistor in a constant current mode. After the low side transistor is disabled and no longer conducts current, then the gate driver circuit controls the high side transistor to operate in full-enhancement mode. In boost operating mode, after switching off the high side transistor, the gate driver circuit controls the low side transistor in a constant current mode. After the high side transistor is disabled, then the gate driver circuit controls the low side switching transistor to operate in full-enhancement mode. In both buck and boost operation, the gate driver circuit operates without dead time in which both the high side and low side transistors are off.
    Type: Grant
    Filed: July 1, 2017
    Date of Patent: November 3, 2020
    Assignee: Active-Semi, Inc.
    Inventors: Thinh Ba Nguyen, Thien Khanh Luong, Thuc Huu Lam, Hue Khac Trinh
  • Patent number: 10790812
    Abstract: An integrated circuit includes a gate driver circuit that controls high side and low side transistors to operate in buck or boost mode. In buck operating mode, after switching off the low side transistor, the gate driver circuit controls the high side transistor in a constant current mode. After the low side transistor is disabled and no longer conducts current, then the gate driver circuit controls the high side transistor to operate in full-enhancement mode. In boost operating mode, after switching off the high side transistor, the gate driver circuit controls the low side transistor in a constant current mode. After the high side transistor is disabled, then the gate driver circuit controls the low side switching transistor to operate in full-enhancement mode. In both buck and boost operation, the gate driver circuit operates without dead time in which both the high side and low side transistors are off.
    Type: Grant
    Filed: July 1, 2017
    Date of Patent: September 29, 2020
    Assignee: Active-Semi, Inc.
    Inventors: Thinh Ba Nguyen, Thien Khanh Luong, Thuc Huu Lam, Hue Khac Trinh
  • Patent number: 10778079
    Abstract: An integrated circuit (IC) comprises a regulator circuit, a bootstrap control circuit, and a gate driver that drives a transistor pair in buck or boost mode to switch current through an inductor. The IC has a VIN terminal coupled to receive a voltage generated from an AC power source, a STR terminal coupled to receive a voltage from a stored power source (e.g., a capacitor bank), and a HSB terminal that is capacitively coupled to the inductor. When bucking or boosting, the regulator circuit generates VDD supply voltage from the stored power source, supplies the VDD supply voltage onto the bootstrap control circuit, and the bootstrap control circuit generates a gate driver supply voltage that is supplied to the gate driver circuit. When not bucking or boosting, voltage on the HSB terminal is maintained between a voltage threshold from the AC power source without draining the stored power source.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: September 15, 2020
    Assignee: Active-Semi, Inc.
    Inventors: Thuc Huu Lam, Khanh Quang Dinh, Tung Van Nguyen, Hue Khac Trinh
  • Patent number: 10770894
    Abstract: A power loss protection integrated circuit includes a VIN terminal, a VOUT terminal, an STR terminal, a switch circuit (eFuse), a control circuit, and a prebiasing circuit. In a normal mode, current flows from a power source, into VIN, through the eFuse, out of VOUT, and to the output node. A switching converter of which the control circuit is a part is disabled. If a switch over condition then occurs, the eFuse is turned off and the switching converter starts operating. The switching converter receives energy from STR and drives the output node. Switch over is facilitated by prebiasing. Prior to switch over, the prebiasing circuit prebiases a control loop node as a function of eFuse current flow prior to switch over. When the switching converter begins operating, the node is already prebiased for the proper amount of current to be supplied by the switching converter onto the output node.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: September 8, 2020
    Assignee: Active-Semi, Inc.
    Inventors: Thuc Huu Lam, Hue Khac Trinh, Hiroshi Watanabe
  • Publication number: 20200153242
    Abstract: A power loss protection integrated circuit includes a VIN terminal, a VOUT terminal, an STR terminal, a switch circuit (eFuse), a control circuit, and a prebiasing circuit. In a normal mode, current flows from a power source, into VIN, through the eFuse, out of VOUT, and to the output node. A switching converter of which the control circuit is a part is disabled. If a switch over condition then occurs, the eFuse is turned off and the switching converter starts operating. The switching converter receives energy from STR and drives the output node. Switch over is facilitated by prebiasing. Prior to switch over, the prebiasing circuit prebiases a control loop node as a function of eFuse current flow prior to switch over. When the switching converter begins operating, the node is already prebiased for the proper amount of current to be supplied by the switching converter onto the output node.
    Type: Application
    Filed: January 14, 2020
    Publication date: May 14, 2020
    Inventors: Thuc Huu Lam, Hue Khac Trinh, Hiroshi Watanabe
  • Patent number: 10090675
    Abstract: A power loss protection integrated circuit includes a VIN terminal, a VOUT terminal, an STR terminal, a switch circuit (eFuse), a control circuit, and a prebiasing circuit. In a normal mode, current flows from a power source, into VIN, through the eFuse, out of VOUT, and to the output node. A switching converter of which the control circuit is a part is disabled. If a switch over condition then occurs, the eFuse is turned off and the switching converter starts operating. The switching converter receives energy from STR and drives the output node. Switch over is facilitated by prebiasing. Prior to switch over, the prebiasing circuit prebiases a control loop node as a function of eFuse current flow prior to switch over. When the switching converter begins operating, the node is already prebiased for the proper amount of current to be supplied by the switching converter onto the output node.
    Type: Grant
    Filed: April 1, 2017
    Date of Patent: October 2, 2018
    Assignee: Active-Semi, Inc.
    Inventors: Thuc Huu Lam, Hue Khac Trinh, Hiroshi Watanabe
  • Patent number: 9178413
    Abstract: A power supply system includes an Offline Total Power Management Integrated Circuit (OTPMIC). The OTPMIC controls a Power Factor Correction (PFC) converter, a main AC/DC converter, and a standby AC/DC converter. A PFC Autodetect circuit in the OTPMIC monitors current flow in the PFC converter. If a high power condition is detected, then the PFC Autodetect circuit enables the PFC converter. The high power condition may be a voltage drop across a current sense resistor of a predetermined voltage for a predetermined time, within one half period of the incoming AC supply voltage. If a low power condition is detected, then the PFC Autodetect circuit disables the PFC converter. The PFC Autodetect circuit stores an IMON value that determines the predetermined voltage, and a TMON value that determines the predetermined time. The IMON and TMON values are loaded into the Autodetect circuit across an optocoupler link of the standby converter.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: November 3, 2015
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Hue Khac Trinh, Khanh Quang Dinh, Duong Cong Le, Degang Xia
  • Publication number: 20150138856
    Abstract: A power supply system includes an Offline Total Power Management Integrated Circuit (OTPMIC). The OTPMIC controls a Power Factor Correction (PFC) converter, a main AC/DC converter, and a standby AC/DC converter. A PFC Autodetect circuit in the OTPMIC monitors current flow in the PFC converter. If a high power condition is detected, then the PFC Autodetect circuit enables the PFC converter. The high power condition may be a voltage drop across a current sense resistor of a predetermined voltage for a predetermined time, within one half period of the incoming AC supply voltage. If a low power condition is detected, then the PFC Autodetect circuit disables the PFC converter. The PFC Autodetect circuit stores an IMON value that determines the predetermined voltage, and a TMON value that determines the predetermined time. The IMON and TMON values are loaded into the Autodetect circuit across an optocoupler link of the standby converter.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 21, 2015
    Applicant: Active-Semi, Inc.
    Inventors: Steven Huynh, Hue Khac Trinh, Khanh Quang Dinh, Duong Cong Le, Degang Xia
  • Patent number: 8996903
    Abstract: A Multi-Tile Power Management Integrated Circuit (MTPMIC) includes tiles including an MCU/ADC tile and a power manager tile. The power manager tile includes a hibernate circuit and a set of Configurable Switching Power Supply Pulse Width Modulator (CSPSPWM) components. The CSPSPWM, in combination with other circuitry external to the integrated circuit, form a switching power supply. The hibernate circuit is operable in a hibernate mode where the CSPSPWM is disabled and the switching power supply no longer generates a supply voltage. A processor in the MCU/ADC tile writes across a standardized bus to configure the hibernate circuit to wake up after a timer determines a configurable amount of time has lapsed, or to wake up in response to a signal present on a terminal of MTPMIC. The processor enables the hibernate mode causing the switching power supply to no longer provide power to the processor and other circuitry of MTPMIC.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: March 31, 2015
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Hue Khac Trinh
  • Publication number: 20140164803
    Abstract: A Multi-Tile Power Management Integrated Circuit (MTPMIC) includes tiles including an MCU/ADC tile and a power manager tile. The power manager tile includes a hibernate circuit and a set of Configurable Switching Power Supply Pulse Width Modulator (CSPSPWM) components. The CSPSPWM, in combination with other circuitry external to the integrated circuit, form a switching power supply. The hibernate circuit is operable in a hibernate mode where the CSPSPWM is disabled and the switching power supply no longer generates a supply voltage. A processor in the MCU/ADC tile writes across a standardized bus to configure the hibernate circuit to wake up after a timer determines a configurable amount of time has lapsed, or to wake up in response to a signal present on a terminal of MTPMIC. The processor enables the hibernate mode causing the switching power supply to no longer provide power to the processor and other circuitry of MTPMIC.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: Active-Semi, Inc.
    Inventors: Steven Huynh, Hue Khac Trinh