Patents by Inventor Hugh M. Putman

Hugh M. Putman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8227650
    Abstract: A process for the selective hydrogenation of dienes and acetylenes in a mixed hydrocarbon stream from a pyrolysis steam cracker in which a front end a one step acetylene hydrogenation is carried out using catalyst comprising (A) 1 to 30 wt. % based on the total weight of the catalyst of a catalytic component of nickel only or nickel and one or more elements selected from the group consisting of copper, rhenium, palladium, zinc, gold, silver, magnesium, molybdenum, calcium and bismuth deposited on (B) a support having the a BET surface area of from 1 to about 100 m2/gram, total nitrogen pore volume of from 0.2 to about 0.9 cc/gram and an average pore diameter of from about 110 to 450 ? under conditions of temperature and pressure to selectively hydrogenate acetylenes and dienes. The process hydrogenates the dienes and acetylenes to olefins without loss of ethylene and propylene in the light and heavy products which eliminates the need for further processing of the heavier stream.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: July 24, 2012
    Assignee: Catalytic Distillation Technologies
    Inventors: Hugh M. Putman, John R. Adams
  • Publication number: 20100317906
    Abstract: A process for the selective hydrogenation of dienes and acetylenes in a mixed hydrocarbon stream from a pyrolysis steam cracker in which a front end a one step acetylene hydrogenation is carried out using catalyst comprising (A) 1 to 30 wt. % based on the total weight of the catalyst of a catalytic component of nickel only or nickel and one or more elements selected from the group consisting of copper, rhenium, palladium, zinc, gold, silver, magnesium, molybdenum, calcium and bismuth deposited on (B) a support having the a BET surface area of from 1 to about 100 m2/gram, total nitrogen pore volume of from 0.2 to about 0.9 cc/gram and an average pore diameter of from about 110 to 450 ? under conditions of temperature and pressure to selectively hydrogenate acetylenes and dienes. The process hydrogenates the dienes and acetylenes to olefins without loss of ethylene and propylene in the light and heavy products which eliminates the need for further processing of the heavier stream.
    Type: Application
    Filed: August 20, 2010
    Publication date: December 16, 2010
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Hugh M. Putman, John R. Adams
  • Patent number: 7297824
    Abstract: Improved Ni catalysts for hydrogenation reactions are disclosed. The catalysts are useful for hydrogenation such as selective hydrogenation of acetylenic impurities in crude olefin and diolefin streams. The catalysts are prepared by depositing nickel on a porous support which has the following specific physical properties; BET surface area of from 30 to about 100 m2/g, total nitrogen pore volume of from 0.4 to about 0.9 cc/g, and an average pore diameter of from about 110 to 450 ? with or without modifiers of one or more elements selected from the group consisting of Cu, Re, Pd, Zn, Mg, Mo, Ca and Bi.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: November 20, 2007
    Assignee: Catalytic Distillation Tehnologies
    Inventors: J. Yong Ryu, Hugh M. Putman
  • Patent number: 7196035
    Abstract: Improved Ni catalysts for hydrogenation reactions are disclosed. The catalysts are useful for hydrogenation such as selective hydrogenation of acetylenic impurities in crude olefin and diolefin streams. The catalysts are prepared by depositing nickel on a porous support which has the following specific physical properties; BET surface area of from 30 to about 100 m2/g, total nitrogen pore volume of from 0.4 to about 0.9 cc/g, and an average pore diameter of from about 110 to 450 ? with or without modifiers of one or more elements selected from the group consisting of Cu, Re, Pd, Zn, Mg, Mo, Ca and Bi.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: March 27, 2007
    Assignee: Catalytic Distillation Technologies
    Inventors: J. Yong Ryu, Hugh M. Putman
  • Patent number: 7022645
    Abstract: Improved Ni catalysts for hydrogenation reactions are disclosed. The catalysts are useful for hydrogenation such as selective hydrogenation of acetylenic impurities in crude olefin and diolefin streams. The catalysts are prepared by depositing nickel on a porous support which has the following specific physical properties; BET surface area of from 30 to about 100 m2/g, total nitrogen pore volume of from 0.4 to about 0.9 cc/g, and an average pore diameter of from about 110 to 450 ? with or without modifiers of one or more elements selected from the group consisting of Cu, Re, Pd, Zn, Mg, Mo, Ca and Bi.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: April 4, 2006
    Assignee: Catalytic Distillation Technologies
    Inventors: J. Yong Ryu, Hugh M. Putman
  • Patent number: 6583325
    Abstract: A process for the production of tertiary ethers from the reaction of isoolefins with lower alcohols, such as methanol, uses two distillation column reactors in series to maximize conversion, especially for isopentenes and isohexenes. The second distillation column reactor may be concurrently used as a C5 polishing reactor and a reactor for producing MTBE or ETBE from isobutene, for example.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: June 24, 2003
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Hugh M. Putman, Henry J. Semerak, Clifford S. Crossland
  • Patent number: 6440299
    Abstract: A process for treating a light cracked naphtha to be used as an etherification feed stock is disclosed in which mercaptans, H2S and diolefins are removed simultaneously in a distillation column reactor using a reduced nickel catalyst. The mercaptans and H2S are reacted with the diolefins to form sulfides which are higher boiling than that portion of the naphtha which is used as feed to the etherification unit. The higher boiling sulfides are removed as bottoms along with any C6 and heavier materials. Any diolefins not converted to sulfides are selectively hydrogenated to mono-olefins for use in the etherification process.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: August 27, 2002
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Gary R. Gildert, Hugh M. Putman
  • Patent number: 6338793
    Abstract: A process for the hydrodesulfurization of a diesel boiling range petroleum fraction wherein the hydrodesulfurization is carried out concurrently with a fractional distillation in a distillation column reactor containing a catalyst bed. The diesel is fed above the catalyst bed and hydrogen is fed below the bed. The heat for the distillation is provided by the heat of reaction of the hydrodesulfurization.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: January 15, 2002
    Assignee: Catalytic Distillation Technologies
    Inventor: Hugh M. Putman
  • Publication number: 20010050245
    Abstract: A process for treating a light cracked naphtha to be used as an etherification feed stock is disclosed in which mercaptans, H2S and diolefins are removed simultaneously in a distillation column reactor using a reduced nickel catalyst. The mercaptans and H2S are reacted with the diolefins to form sulfides which are higher boiling than that portion of the naphtha which is used as feed to the etherification unit. The higher boiling sulfides are removed as bottoms along with any C6 and heavier materials. Any diolefins not converted to sulfides are selectively hydrogenated to mono-olefins for use in the etherification process.
    Type: Application
    Filed: July 18, 2001
    Publication date: December 13, 2001
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Dennis Hearn, Gary R. Gildert, Hugh M. Putman
  • Patent number: 6231752
    Abstract: A process for treating a full boiling range naphtha is disclosed in which the mercaptans and diolefins are removed simultaneously in a debutanizer distillation column reactor. The mercaptans are reacted with the diolefins to form sulfides which are higher boiling than the C4 and lighter portion of the naphtha which is taken as overheads. The higher boiling sulfides are removed as bottoms along with any C5 and heavier materials. The bottoms are preferably taken to a splitter where a portion is taken as overheads and a heavier portion is recovered with the sulfides. This reduced volume of naphtha may be hydrogenated to convert the sulfides to H2S and diolefins, which may be hydrogenated to olefins and alkanes.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: May 15, 2001
    Assignee: Catalytic Distillation Technologies
    Inventor: Hugh M. Putman
  • Patent number: 6083378
    Abstract: A process for concurrently fractionating and hydrotreating of a full range naphtha stream. The full boiling range naphtha stream is subjected to simultaneous hydrodesulfurization and splitting into a light boiling range naphtha and a heavy boiling range naphtha. The two boiling range naphthas are treated separately according to the amount of sulfur in each cut and the end use of each fraction.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: July 4, 2000
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary R. Gildert, Willibrord A. Groten, Hugh M. Putman
  • Patent number: 5961815
    Abstract: The hydroconversion of heavy petroliferous stocks boiling mainly above 400.degree. F. is carried out in a distillation column reactor where concurrently a petroleum stream is fed into a feed zone; hydrogen is fed at a point below said feed zone; the petroleum stream is distilled and contacted in the presence of a cracking catalyst prepared in the form of a catalytic distillation structure at total pressure of less than about 300 psig and a hydrogen partial pressure in the range of 1.0 to less than 70 psia and a temperature in the range of 400 to 1000.degree. F. whereby a portion of the petroleum stream is cracked to lighter products boiling below the boiling point of the feed and products are distilled to remove a vaporous overhead stream comprising products mainly boiling below the boiling point of the feed and a liquid bottoms stream.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: October 5, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: Thomas P. Hickey, Dennis Hearn, Hugh M. Putman
  • Patent number: 5877363
    Abstract: A process for the removal of vinylacetylene, ethylacetylene and 1,2-butadiene from C.sub.4 aliphatic hydrocarbon streams comprising, concurrently: (1) feeding hydrogen and a hydrocarbon stream comprising C.sub.4 hydrocarbons including butanes, butenes, butadienes and vinylacetylene to a distillation column reactor containing a bed comprising a hydrogenation catalyst of the type characterized by platinum, palladium or rhodium which is prepared as a distillation structure to selectively hydrogenate a portion of the vinylacetylene and the 1,2-butadiene and (2) fractionally distilling the reaction mixture to remove a heavier fraction and removing a fraction overhead comprising substantially all of the C.sub.4.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: March 2, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary R. Gildert, Hugh M. Putman, Dennis Hearn
  • Patent number: 5856602
    Abstract: A process for the hydrogenation of a selected aromatic, such as benzene contained in a naphtha stream to cyclohexane wherein the distillation column reactor is operated such that the portion of the naphtha containing the benzene is maintained in the catalyst bed such that essentially only benzene is hydrogenated. The reactor is operated at a pressure wherein the reaction mixture is boiling under low hydrogen partial pressure in the range of about 0.1 psi to less than 70 psia at 0 to 350 psig. The catalyst is provided as a catalytic distillation structure such that the reaction is concurrently occurring with a distillation. A portion of the overheads is returned as reflux to provide cooling within the catalyst bed and concurrent condensation of some of the gaseous material within the bed.
    Type: Grant
    Filed: September 9, 1996
    Date of Patent: January 5, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary R. Gildert, Hugh M. Putman, Dennis Hearn
  • Patent number: 5779883
    Abstract: A process for the hydrodesulfurization of petroleum streams is disclosed wherein the sulfur containing petroleum stream is contacted along with hydrogen at a partial pressure of less than 70 psig in a distillation column reactor containing a hydrodesulfurization catalyst in the form of a catalytic distillation structure.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: July 14, 1998
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Hugh M. Putman
  • Patent number: 5773670
    Abstract: A process for the hydrogenation of unsaturated cyclic and polycyclic compounds to saturates is provided wherein the reactor is operated at a pressure wherein the reaction mixture is boiling under low hydrogen partial pressure in the range of about 0.1 psi to less than 70 psia at 0 to 350 psig. The catalyst is provided as a catalytic distillation structure such that the reaction is concurrently occurring with a distillation. A portion of the overheads is returned as reflux to provide cooling within the catalyst bed and concurrent condensation of some of the gaseous material within the bed. Although no separation is obtained all of the advantages of concurrent reaction with distillation are achieved.
    Type: Grant
    Filed: March 6, 1995
    Date of Patent: June 30, 1998
    Inventors: Gary R. Gildert, Dennis Hearn, Hugh M. Putman
  • Patent number: 5763714
    Abstract: A mixed aromatic stream is hydrotreated to remove olefins and fractionated to separate C.sub.9 + heavies in a distillation column reactor and the C.sub.8 and lighter material is fed to a selective adsorption unit where the para-xylene is removed. The para-xylene depleted raffinate therefrom may be subjected to isomerization to form additional para-xylene. The effluent from the isomerization can be fed to the distillation column reactor for hydrogenation of any olefins formed during the isomerization or directly to the adsorption unit.
    Type: Grant
    Filed: January 8, 1997
    Date of Patent: June 9, 1998
    Assignee: Catalytic Distillation Technologies
    Inventors: Thomas P. Hickey, Dennis Hearn, Hugh M. Putman
  • Patent number: 5595634
    Abstract: A process for treating C.sub.3 to C.sub.12 petroleum fractions, such as a light cracked naphtha to be used as an etherification feed stock in which H.sub.2 S is removed by distillation of at least the C.sub.3 fraction and mercaptans and diolefins are removed simultaneously in a distillation column reactor using a dual catalyst bed. The mercaptans and H.sub.2 S are reacted with the diolefins in the presence of a reduced nickel catalyst to form sulfides which are higher boiling than the portion of the feed which is fractionated to an upper hydrogenation catalyst bed of palladium for hydrogenating diolefins and acetylenes. The higher boiling sulfides are removed as bottoms along with heavier materials. Any diolefins not converted to sulfides and acetylenes are selectively hydrogenated to mono-olefins in the presence of a palladium oxide catalyst in an upper bed, producing overheads, substantially free of sulfur compounds, diolefins and acetylenes.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: January 21, 1997
    Assignee: Chemical Research & Licensing Company
    Inventors: Dennis Hearn, Gary R. Gildert, Hugh M. Putman