Patents by Inventor Hugo Biard

Hugo Biard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240170284
    Abstract: A method for producing a semiconductor structure, comprises: a) providing a temporary substrate made of graphite having a grain size of between 4 microns and 35 microns, a porosity of between 6 and 17%, and a coefficient of thermal expansion of between 4×10-6/° C. and 5×10-6/° C.; b) depositing, on a front face of the temporary substrate, a carrier layer made of polycrystalline silicon carbide having a thickness of between 10 microns and 200 microns, c) transferring a working layer made of monocrystalline silicon carbide to the carrier layer to form a composite structure, the transfer implementing bonding by molecular adhesion, d) forming an active layer on the working layer, e) and removing the temporary substrate to form the semiconductor structure, the structure including the active layer, the working layer and the carrier layer. A composite structure is obtained in an intermediate step of the production method.
    Type: Application
    Filed: March 3, 2022
    Publication date: May 23, 2024
    Inventors: Gweltaz Gaudin, Christophe Maleville, lonut Radu, Hugo Biard
  • Publication number: 20240145294
    Abstract: A method for manufacturing a semiconductor structure comprises: a) providing a temporary substrate comprising a material having a coefficient of thermal expansion close to that of silicon carbide; b) forming an intermediate graphite layer on a front face of the temporary substrate; c) depositing, on the intermediate layer, a polycrystalline silicon carbide support layer having a thickness of between 10 microns and 200 microns, d) transferring a useful monocrystalline silicon carbide layer onto the support layer in order to form a composite structure, the transfer using molecular adhesion bonding, e) forming an active layer on the useful layer, and f) disassembling, at an interface of or inside the intermediate layer, to structure to form the semiconductor structure including the active layer, the useful layer and the support layer. A composite structure is obtained by the method.
    Type: Application
    Filed: March 3, 2022
    Publication date: May 2, 2024
    Inventors: Hugo Biard, Gweltaz Gaudin
  • Publication number: 20240112908
    Abstract: A method of manufacturing a composite structure comprises: a) providing a donor substrate of a single-crystal semiconductor material, b) implanting ions into the donor substrate, excluding an annular peripheral region, to form a buried brittle plane, the implantation conditions defining a first thermal budget for obtaining bubbling on a face of the donor substrate and a second thermal budget for obtaining a fracture in the brittle plane, c) forming a stiffening film on the donor substrate, carried out by applying a thermal budget lower than the first thermal budget, the stiffening film being perforated in the form of a mesh, the perforated stiffening film leaving a plurality of zones of the front face bare, d) depositing a carrier substrate on the donor substrate carried out by applying a thermal budget greater than the first thermal budget, and e) separating the donor substrate along the brittle plane.
    Type: Application
    Filed: March 14, 2022
    Publication date: April 4, 2024
    Inventors: Hugo Biard, Didier Landru
  • Publication number: 20230260841
    Abstract: A method of producing a composite structure comprising a thin layer of monocrystalline silicon carbide arranged on a carrier substrate of silicon carbide comprises: a) a step of provision of an initial substrate of monocrystalline silicon carbide, b) a step of epitaxial growth of a donor layer of monocrystalline silicon carbide on the initial substrate, to form a donor substrate, c) a step of ion implantation of light species into the donor layer, to form a buried brittle plane delimiting the thin layer, d) a step of formation of a carrier substrate of silicon carbide on the free surface of the donor layer, comprising a deposition at a temperature of between 400° C. and 1100° C., e) a step of separation along the buried brittle plane, to form the composite structure and the remainder of the donor substrate, and f) a step of chemical-mechanical treatment(s) of the composite structure.
    Type: Application
    Filed: October 26, 2020
    Publication date: August 17, 2023
    Inventors: Ionut Radu, Hugo Biard, Christophe Maleville, Eric Guiot, Didier Landru
  • Publication number: 20230230868
    Abstract: A temporary substrate, which is detachable at a detachment temperature higher than 1000° C. comprises: a semiconductor working layer extending along a main plane, a carrier substrate, an intermediate layer having a thickness less than 20 nm arranged between the working layer and the carrier substrate, a bonding interface located in or adjacent the intermediate layer, gaseous atomic species distributed according to a concentration profile along the axis normal to the main plane, the atoms remaining trapped in the intermediate layer and/or in an adjacent layer of the carrier substrate with a thickness less than or equal to 10 nm and/or in an adjacent sublayer of the working layer with a thickness less than or equal to 10 nm when the temporary substrate is subjected to a temperature lower than the detachment temperature.
    Type: Application
    Filed: April 26, 2021
    Publication date: July 20, 2023
    Inventors: Hugo Biard, Gweltaz Gaudin, Séverin Rouchier, Didier Landru
  • Publication number: 20230197435
    Abstract: A method for manufacturing a composite structure comprising a thin layer made of monocrystalline silicon carbide arranged on a carrier substrate made of silicon carbide, the method comprising: a) a step of providing a donor substrate made of monocrystalline silicon carbide, b) a step of ion implantation of light species into the donor substrate, to form a buried brittle plane delimiting the thin layer between the buried brittle plane and a free surface of the donor substrate, c) a succession of n steps of forming crystalline carrier layers, with n greater than or equal to 2; the n crystalline carrier layers being positioned on the front face of the donor substrate successively one on the other, and forming the carrier substrate; each formation step comprising: direct liquid injection chemical vapor deposition, at a temperature below 900° C.
    Type: Application
    Filed: January 12, 2021
    Publication date: June 22, 2023
    Inventor: Hugo Biard
  • Publication number: 20230160102
    Abstract: A method for manufacturing a composite structure comprising a thin layer made of monocrystalline silicon carbide arranged on a carrier substrate made of silicon carbide, the method comprising: a) a step of providing a donor substrate made of monocrystalline SiC, the donor substrate comprising a donor layer produced by epitaxial growth on an initial substrate, the donor layer exhibiting a density of crystal defects that is lower than that of the initial substrate; b) a step of ion implantation of light species into the donor layer, in order to form a buried brittle plane delimiting the thin layer between the buried brittle plane and a free face of the donor layer; c) a succession of n steps of formation of carrier layers, with n greater than or equal to 2, the n carrier layers being arranged on the donor layer successively on one another and forming the carrier substrate, each step of formation comprising a chemical vapor deposition, at a temperature of between 400° C. and 1100° C.
    Type: Application
    Filed: January 12, 2021
    Publication date: May 25, 2023
    Inventors: Hugo Biard, Ionut Radu, Didier Landru
  • Publication number: 20220415653
    Abstract: A process for manufacturing a composite structure comprises: a) providing an initial substrate made of monocrystalline silicon carbide, b) epitaxially growing a monocrystalline silicon carbide donor layer on the initial substrate to form a donor substrate 111, c) implanting ions into the donor layer to form a buried brittle plane defining the the donor layer, d) depositing, using liquid injection-chemical vapor deposition at a temperature below 1000° C., a carrier layer on the donor layer, the carrier layer comprising an at least partially amorphous SiC matrix, e) separating the donor substrate along the brittle plane to form an intermediate composite structure comprising the donor layer on the carrier layer f) heat treating the intermediate composite structure at a temperature of between 1000° C. and 1800° C. to crystallize the carrier layer and form the polycrystalline carrier substrate, and g) applying mechanical and/or chemical treatment(s) of the composite structure.
    Type: Application
    Filed: October 26, 2020
    Publication date: December 29, 2022
    Inventor: Hugo Biard