Patents by Inventor Hugo Visser

Hugo Visser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8427527
    Abstract: An autostereoscopic display 101, which provides a depth perception by providing a viewer's left and right eyes (104a, 104b) with two slightly different perspectives of an image to be displayed, is provided for ultrasound guided interventions with a surgical instrument (103). The surgeon watches displayed ultrasound data (102), rendered for at least two views. The plane at which those views (L, R) intersect is adjusted to correspond exactly with the tracked three-dimensional position within a displayed scene of the surgical instrument (103), which position can be extracted from the three-dimensional ultrasound data by means of, for example, 3D object recognition. Thus, the point of reconstruction of the image presented to the viewer can be dynamically adjusted to correspond with the position of the surgical instrument on which the surgeon's eyes are presumed to be focused.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: April 23, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Hugo Visser, Ivan Salgo
  • Publication number: 20070294639
    Abstract: The invention provides a method and a system for manipulating an image displayed on a screen (11), where an operator uses e.g. a finger to identify a region of interest (ROI) without touching the screen (11). The spatial position of the finger relative to the screen (11) is detected, i.e. its x, y and z coordinates. A region of interest (ROI) on the screen (11) including the two coordinates (x, y) is selected, and an image property such as contrast in the selected region of interest is changed in dependence on the distance (z) of the movable object (13) from the screen (11). The invention is ideal for manipulating medical images such as X-ray images, but applications in consumer electronics are also conceivable where image processing is performed.
    Type: Application
    Filed: November 9, 2005
    Publication date: December 20, 2007
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS, N.V.
    Inventors: Cees Van Berkel, Hugo Visser
  • Publication number: 20070141736
    Abstract: The invention relates to a field emission device, and a method of manufacturing same. The field emission device comprises a gate electrode (140, 340, 440) which is provided with a pattern of electron passing apertures (135, 335, 435). The gate electrode (140, 340, 440) is arranged near particles (110, 310, 410) distributed on a substrate (125, 325, 425), at least a part of said particles (110, 310, 410) being arranged for emitting electrons. By means of the gate electrode (140, 340, 440), an electric field is applicable by means of which emitting particles emit electrons. Particularly good electron emission is obtained, because the pattern of apertures (135, 335, 435) is similar to the distribution of particles (110, 310, 410) on the substrate. This is achieved by means of the manufacturing method, in which the particles (110, 310, 410) are used in an illumination step to mask regions (155, 355) of a photo layer (150, 352).
    Type: Application
    Filed: September 12, 2003
    Publication date: June 21, 2007
    Inventors: Liesbeth Van Pieterson, Siebe De Zwart, Hugo Visser
  • Publication number: 20060267475
    Abstract: A field emission device (1) may be used for emitting electrons in, for example, a field emission display (FED). Field emission tips (40) are used for the emitting of electrons in the field emission device (1). In operation of the field emission device (1) a voltage is applied between a first electrode (4) having electrical contact with the field emission tip (40) and a second electrode (34) to make the field emission tip (40) emit electrons. To form a field emission tip (40) a layer of liquid material is applied on a substrate (2) provided with the first electrode (4). The layer of liquid material is embossed with a patterned stamp and subsequently cured to form a field emission tip structure (20). A conductive film (38) is applied on the field emission tip structure (20) to form a field emission tip (40) that has electrical contact with the first electrode (4).
    Type: Application
    Filed: April 26, 2004
    Publication date: November 30, 2006
    Inventors: Hugo Visser, Marcus Verschuuren, Teunis Vink
  • Publication number: 20060250599
    Abstract: A lithographic projection apparatus includes a reflector assembly, the reflector assembly includes a first and a second reflector extending in a direction of an optical axis, the first and second reflector each having a reflective surface, a backing surface and an entry section at respectively a first and a second distance from the optical axis, the first distance being larger than the second distance, rays deriving from a point on the optical axis being cut off by the entry sections of the first and second reflectors and being reflected on the reflective surface of the first reflector and defining a high radiation intensity zone and a low radiation intensity zone between the reflectors; a radial support member configured to support the reflectors extending in the low radiation intensity zone, wherein the radial support member creates a shade in a downstream direction of the optical axis and a virtual shade in an upstream direction of the optical axis; and a structure placed in the virtual shade.
    Type: Application
    Filed: July 7, 2006
    Publication date: November 9, 2006
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Levinus Bakker, Jeroen Jonkers, Frank Schuurmans, Hugo Visser
  • Publication number: 20050148210
    Abstract: A lithographic projection apparatus includes a radiation system configured to form a beam of radiation from radiation emitted by a radiation source, as well as a support configured to hold a patterning device, which when irradiated by the beam of radiation provides the beam of radiation with a pattern. A substrate table is configured to hold a substrate, and a projection system is configured to image an irradiated portion of the patterning device onto a target portion of the substrate. The radiation system further includes an aperture at a distance from the optical axis, a reflector which is placed behind the aperture when seen from the source and a structure placed in a low radiation intensive region behind the aperture.
    Type: Application
    Filed: January 13, 2005
    Publication date: July 7, 2005
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Levinus Bakker, Jeroen Jonkers, Frank Pieter Schuurmans, Hugo Visser