Patents by Inventor Hui-Hsien Wei

Hui-Hsien Wei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968840
    Abstract: A thin film transistor includes an active layer located over a substrate, a first gate stack including a stack of a first gate dielectric and a first gate electrode and located on a first surface of the active layer, a pair of first contact electrodes contacting peripheral portions of the first surface of the active layer and laterally spaced from each other along a first horizontal direction by the first gate electrode, a second contact electrode contacting a second surface of the active layer that is vertically spaced from the first surface of the active layer, and a pair of second gate stacks including a respective stack of a second gate dielectric and a second gate electrode and located on a respective peripheral portion of a second surface of the active layer.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yong-Jie Wu, Yen-Chung Ho, Hui-Hsien Wei, Chia-Jung Yu, Pin-Cheng Hsu, Feng-Cheng Yang, Chung-Te Lin
  • Patent number: 11968908
    Abstract: In an embodiment, a method includes: forming a first inter-metal dielectric (IMD) layer over a semiconductor substrate; forming a bottom electrode layer over the first IMD layer; forming a magnetic tunnel junction (MTJ) film stack over the bottom electrode layer; forming a first top electrode layer over the MTJ film stack; forming a protective mask covering a first region of the first top electrode layer, a second region of the first top electrode layer being uncovered by the protective mask; forming a second top electrode layer over the protective mask and the first top electrode layer; and patterning the second top electrode layer, the first top electrode layer, the MTJ film stack, the bottom electrode layer, and the first IMD layer with an ion beam etching (IBE) process to form a MRAM cell, where the protective mask is etched during the IBE process.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tai-Yen Peng, Hui-Hsien Wei, Han-Ting Lin, Sin-Yi Yang, Yu-Shu Chen, An-Shen Chang, Qiang Fu, Chen-Jung Wang
  • Publication number: 20240096706
    Abstract: The present disclosure provides a method of forming a semiconductor device. The method includes: forming an interconnect structure over a substrate; forming a first gate structure and a second gate structure in a first layer of the interconnect structure; forming a first metal oxide layer and a second metal oxide layer in a second layer of the interconnect structure over the first gate structure and the second gate structure, respectively; forming an implant mask over the first metal oxide layer and the second metal oxide layer, the implant mask having different thicknesses corresponding to the first metal oxide layer and the second oxide layer; and performing an implantation operation on the first metal oxide layer and the second metal oxide layer.
    Type: Application
    Filed: January 12, 2023
    Publication date: March 21, 2024
    Inventors: YEN-CHUNG HO, YONG-JIE WU, HUI-HSIEN WEI
  • Publication number: 20240023457
    Abstract: An integrated circuit includes a metallization pattern having first and second conductive features, an etch stop layer over the metallization pattern, a memory device, a bottom electrode via, a third conductive feature, and a dielectric feature. The etch stop layer has first and second portions over the first and second conductive features, respectively. The bottom electrode via is in the first portion of the etch stop layer and electrically connecting the memory device over the first portion of the etch stop layer to the first conductive feature. The third conductive feature is in the second portion of the etch stop layer and electrically connected to the second conductive feature. The dielectric feature is between the first and second portions of the etch stop layer and in contact with sidewalls of the first and second portions of the etch stop layer.
    Type: Application
    Filed: July 28, 2023
    Publication date: January 18, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tai-Yen PENG, Chien-Chung HUANG, Yu-Shu CHEN, Sin-Yi YANG, Chen-Jung WANG, Han-Ting LIN, Chih-Yuan TING, Jyu-Horng SHIEH, Hui-Hsien WEI
  • Publication number: 20230389333
    Abstract: A planar insulating spacer layer can be formed over a substrate, and a combination of a semiconducting material layer, a thin film transistor (TFT) gate dielectric layer, and a gate electrode can be formed over the planar insulating spacer layer. A dielectric matrix layer is formed thereabove. A source-side via cavity and a drain-side via cavity can be formed through the dielectric matrix layer over end portions of the semiconducting material layer. Mechanical stress can be generated between the end portions of the semiconducting material layer by changing a lattice constant of end portions of the semiconducting material layer. The mechanical stress can enhance the mobility of charge carriers in a channel portion of the semiconducting material layer.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Hui-Hsien WEI, Yen-Chung HO, Chia-Jung YU, Yong-Jie WU, Pin-Cheng HSU
  • Publication number: 20230380186
    Abstract: A memory structure includes: first and second word lines; a high-k dielectric layer disposed on the first and second word lines; a channel layer disposed on the high-k dielectric layer and comprising a semiconductor material; first and second source electrodes electrically contacting the channel layer; a first drain electrode disposed on the channel layer between the first and second source electrodes; a memory cell electrically connected to the first drain electrode; and a bit line electrically connected to the memory cell.
    Type: Application
    Filed: August 7, 2023
    Publication date: November 23, 2023
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Mauricio MANFRINI, Chung-Te LIN
  • Publication number: 20230380182
    Abstract: In a method of manufacturing a semiconductor device, a magnetic random access memory (MRAM) cell structure is formed. The MRAM cell structure includes a bottom electrode, a magnetic tunnel junction (MTJ) stack and a top electrode. A first insulating cover layer is formed over the MRAM cell structure. A second insulating cover layer is formed over the first insulating cover layer. An interlayer dielectric (ILD) layer is formed. A contact opening in the ILD layer is formed, thereby exposing the second insulating cover layer. A part of the second insulating cover layer and a part of the first insulating cover layer are removed, thereby exposing the top electrode. A conductive layer is formed in the opening contacting the top electrode.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Hui-Hsien WEI, Chung-Te LIN, Han-Ting TSAI, Tai-Yen PENG, Yu-Teng DAI, Chien-Min LEE, Sheng-Chih LAI, Wei-Chih WEN
  • Patent number: 11825661
    Abstract: A planar insulating spacer layer can be formed over a substrate, and a combination of a semiconducting material layer, a thin film transistor (TFT) gate dielectric layer, and a gate electrode can be formed over the planar insulating spacer layer. A dielectric matrix layer is formed thereabove. A source-side via cavity and a drain-side via cavity can be formed through the dielectric matrix layer over end portions of the semiconducting material layer. Mechanical stress can be generated between the end portions of the semiconducting material layer by changing a lattice constant of end portions of the semiconducting material layer. The mechanical stress can enhance the mobility of charge carriers in a channel portion of the semiconducting material layer.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: November 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Hui-Hsien Wei, Yen-Chung Ho, Chia-Jung Yu, Yong-Jie Wu, Pin-Cheng Hsu
  • Publication number: 20230371278
    Abstract: A semiconductor device includes a semiconducting metal oxide fin located over a lower-level dielectric material layer, a gate dielectric layer located on a top surface and sidewalls of the semiconducting metal oxide fin, a gate electrode located on the gate dielectric layer and straddling the semiconducting metal oxide fin, an access-level dielectric material layer embedding the gate electrode and the semiconducting metal oxide fin, a memory cell embedded in a memory-level dielectric material layer and including a first electrode, a memory element, and a second electrode, and a bit line overlying the memory cell. The first electrode may be electrically connected to a drain region within the semiconducting metal oxide fin through a first electrically conductive path, and the second electrode is electrically connected to the bit line.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Mauricio MANFRINI, Chung-Te LIN
  • Publication number: 20230361221
    Abstract: A semiconductor device includes a first dielectric layer, a gate electrode embedded within the first dielectric layer, a layer stack including a gate dielectric layer, a channel layer including a semiconducting metal oxide material, and a second dielectric layer, and a source electrode and a drain electrode embedded in the second dielectric layer and contacting a respective portion of a top surface of the channel layer. A combination of the gate electrode, the gate dielectric layer, the channel layer, the source electrode, and the drain electrode forms a transistor. The total length of the periphery of a bottom surface of the channel layer that overlies the gate electrode is equal to the width of the gate electrode or twice the width of the gate electrode, and resputtering of the gate electrode material on sidewalls of the channel layer is minimized.
    Type: Application
    Filed: July 19, 2023
    Publication date: November 9, 2023
    Inventors: Yong-Jie Wu, Hui-Hsien Wei, Yen-Chung Ho, Mauricio Manfrini, Chia-Jung Yu, Chung-Te Lin, Pin-Cheng Hsu
  • Patent number: 11805658
    Abstract: In a method of manufacturing a semiconductor device, a magnetic random access memory (MRAM) cell structure is formed. The MRAM cell structure includes a bottom electrode, a magnetic tunnel junction (MTJ) stack and a top electrode. A first insulating cover layer is formed over the MRAM cell structure. A second insulating cover layer is formed over the first insulating cover layer. An interlayer dielectric (ILD) layer is formed. A contact opening in the ILD layer is formed, thereby exposing the second insulating cover layer. A part of the second insulating cover layer and a part of the first insulating cover layer are removed, thereby exposing the top electrode. A conductive layer is formed in the opening contacting the top electrode.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: October 31, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hui-Hsien Wei, Chung-Te Lin, Han-Ting Tsai, Tai-Yen Peng, Yu-Teng Dai, Chien-Min Lee, Sheng-Chih Lai, Wei-Chih Wen
  • Publication number: 20230345740
    Abstract: A memory device and method of making the same, the memory device including bit lines disposed on a substrate; memory cells disposed on the bit lines; a first dielectric layer disposed on the substrate, surrounding the bit lines and the memory cells; a second dielectric layer disposed on the first dielectric layer; thin film transistors (TFTs) embedded in the second dielectric layer and configured to selectively provide electric power to corresponding memory cells, the TFTs comprising drain lines disposed on the memory cells, source lines disposed on the first dielectric layer, and selector layers electrically connected to the source lines and the drain lines; and word lines disposed on the second dielectric layer and electrically connected to the TFTs.
    Type: Application
    Filed: June 30, 2023
    Publication date: October 26, 2023
    Inventors: Yen-Chung HO, Hui-Hsien Wei, Mauricio MANFRINI, Chia-Jung Yu, Yong-Jie Wu, Ken-Ichi Goto, Pin-Cheng Hsu
  • Patent number: 11800812
    Abstract: An integrated circuit includes a dielectric layer, a memory device, and a resistor. The memory device includes a bottom electrode via, a bottom electrode, a resistance switching element, and a top electrode. The bottom electrode via is in the dielectric layer. The dielectric layer has a first portion extending along sidewalls of the bottom electrode via, a second portion extending laterally from the first portion, and a third portion. The bottom electrode is over the bottom electrode via. The resistance switching element is over the bottom electrode. The top electrode is over the resistance switching element. The resistor is over the third portion of the dielectric layer. A thickness of the third portion of the dielectric layer is greater than a thickness of the second portion of the dielectric layer.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: October 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tai-Yen Peng, Chien-Chung Huang, Yu-Shu Chen, Sin-Yi Yang, Chen-Jung Wang, Han-Ting Lin, Chih-Yuan Ting, Jyu-Horng Shieh, Hui-Hsien Wei
  • Patent number: 11757047
    Abstract: A semiconductor device includes a first dielectric layer, a gate electrode embedded within the first dielectric layer, a layer stack including a gate dielectric layer, a channel layer including a semiconducting metal oxide material, and a second dielectric layer, and a source electrode and a drain electrode embedded in the second dielectric layer and contacting a respective portion of a top surface of the channel layer. A combination of the gate electrode, the gate dielectric layer, the channel layer, the source electrode, and the drain electrode forms a transistor. The total length of the periphery of a bottom surface of the channel layer that overlies the gate electrode is equal to the width of the gate electrode or twice the width of the gate electrode, and resputtering of the gate electrode material on sidewalls of the channel layer is minimized.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: September 12, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yong-Jie Wu, Yen-Chung Ho, Hui-Hsien Wei, Chia-Jung Yu, Pin-Cheng Hsu, Mauricio Manfrini, Chung-Te Lin
  • Publication number: 20230276712
    Abstract: A device includes a resistance switching layer, a capping layer, a top electrode, a first spacer, and a second spacer. The resistance switching layer is over a substrate. The capping layer is over the resistance switching layer. The top electrode is over the capping layer. The first spacer lines the resistance switching layer and the capping layer. The second spacer lines the first spacer. The capping layer is in contact with the top electrode, the first spacer, and the second spacer.
    Type: Application
    Filed: May 4, 2023
    Publication date: August 31, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tai-Yen PENG, Hui-Hsien WEI, Wei-Chih WEN, Pin-Ren DAI, Chien-Min LEE, Sheng-Chih LAI, Han-Ting TSAI, Chung-Te LIN
  • Patent number: 11737288
    Abstract: A memory device and method of making the same, the memory device including bit lines disposed on the substrate; memory cells disposed on the bit lines; a first dielectric layer disposed on the substrate, surrounding the bit lines and the memory cells; a second dielectric layer disposed on the first dielectric layer; thin film transistors (TFTs) embedded in the second dielectric layer and configured to selectively provide electric power to corresponding memory cells, the TFTs comprising drain lines disposed on the memory cells, source lines disposed on the first dielectric layer, and selector layers electrically connected to the source lines and the drain lines; and word lines disposed on the second dielectric layer and electrically connected to the TFTs.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: August 22, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yen-Chung Ho, Yong-Jie Wu, Chia-Jung Yu, Hui-Hsien Wei, Mauricio Manfrini, Ken-Ichi Goto, Pin-Cheng Hsu
  • Publication number: 20230210028
    Abstract: An IC structure comprises a substrate, a first dielectric structure, a second dielectric structure, a first via structure, and a memory cell structure. The substrate comprises a memory region and a logic region. The first dielectric structure is over the memory region. The second dielectric structure laterally extends from the first dielectric structure to over the logic region. The second dielectric structure has a thickness less than a thickness of the first dielectric structure. The first via structure extends through the first dielectric structure. A top segment of the first via structure is higher than a top surface of the first dielectric structure. The first memory cell structure is over the first via structure.
    Type: Application
    Filed: February 17, 2023
    Publication date: June 29, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tai-Yen PENG, Hui-Hsien WEI, Wei-Chih WEN, Pin-Ren DAI, Chien-Min LEE, Han-Ting TSAI, Jyu-Horng SHIEH, Chung-Te LIN
  • Publication number: 20230200090
    Abstract: A memory structure, device, and method of making the same, the memory structure including: a channel comprising a semiconductor material; a source electrode electrically connected to a first end of the channel; a drain electrode electrically connected to an opposing second end of the channel; a high-k dielectric layer surrounding the channel; a gate electrode surrounding the high-k dielectric layer; and a memory cell electrically connected to the drain electrode and a bit line. The memory cell includes a first electrode that is electrically connected to the drain electrode.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 22, 2023
    Inventors: Yong-Jie WU, Yen-Chung HO, Hui-Hsien WEI, Chia-Jung YU, Pin-Cheng HSU, Mauricio MANFRINI, Chung-Te LIN
  • Patent number: 11683988
    Abstract: A device includes a conductive feature, a dielectric layer, a bottom electrode via, and a liner layer. The dielectric layer is over the conductive feature. The bottom electrode via is in the dielectric layer and over the conductive feature. A topmost surface of the bottom electrode via is substantially flat. A liner layer cups an underside of the bottom electrode via. The liner layer has a topmost end substantially level with the topmost surface of the bottom electrode via.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: June 20, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tai-Yen Peng, Hui-Hsien Wei, Wei-Chih Wen, Pin-Ren Dai, Chien-Min Lee, Sheng-Chih Lai, Han-Ting Tsai, Chung-Te Lin
  • Publication number: 20230063125
    Abstract: A semiconductor device, an integrated circuit, and a method of manufacturing the same are provided. The semiconductor device includes a substrate, a thin-film transistor (TFT) over the substrate, and a magnetoresistive random-access memory (MRAM) cell electrically coupled to the TFT. The TFT includes a gate electrode; a gate dielectric layer disposed over the gate electrode; source/drain electrodes disposed above the gate electrode; and an active layer disposed above the gate electrode. A protection layer is disposed between the TFT and the MRAM cell and electrically connects the MRAM cell to the TFT.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 2, 2023
    Inventors: HUI-HSIEN WEI, YEN-CHUNG HO, CHIA-JUNG YU, YONG-JIE WU, PIN-CHENG HSU