Patents by Inventor Hui-Lin WANG

Hui-Lin WANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230110380
    Abstract: A semiconductor device includes a storage element on a substrate. The storage element has a tapered upper end structure. The tapered upper end structure includes a top electrode and a spacer surrounding the top electrode. A gap-fill dielectric layer is disposed around the spacer. A conductive cap layer covers the top electrode and the spacer. An inter-metal dielectric (IMD) layer is disposed on the conductive cap layer. A metal interconnection is disposed in the IMD layer and electrically connected to the top electrode through the conductive cap layer.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Hui-Lin Wang
  • Publication number: 20230106156
    Abstract: A semiconductor device includes a first metal interconnection on a substrate, a first inter-metal dielectric (IMD) layer around the first metal interconnection, an electromigration enhancing layer on the first metal interconnection, a second IMD layer on and around the electromigration enhancing layer, and a second metal interconnection on the electromigration enhancing layer.
    Type: Application
    Filed: December 5, 2022
    Publication date: April 6, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Po-Kai Hsu, Hung-Yueh Chen, Yu-Ping Wang
  • Publication number: 20230101233
    Abstract: A method for fabricating a semiconductor device includes the steps of: forming a first metal interconnection on a substrate; forming a stop layer on the first metal interconnection; removing the stop layer to form a first opening; forming an electromigration enhancing layer in the first opening; and forming a second metal interconnection on the electromigration enhancing layer. Preferably, top surfaces of the electromigration enhancing layer and the stop layer are coplanar.
    Type: Application
    Filed: December 5, 2022
    Publication date: March 30, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Po-Kai Hsu, Hung-Yueh Chen, Yu-Ping Wang
  • Patent number: 11616193
    Abstract: A semiconductor device includes: a substrate comprising a magnetic tunneling junction (MTJ) region and a logic region, a MTJ on the MTJ region, a top electrode on the MTJ, a connecting structure on the top electrode, and a first metal interconnection on the logic region. Preferably, the first metal interconnection includes a via conductor on the substrate and a trench conductor, in which a bottom surface of the trench conductor is lower than a bottom surface of the connecting structure.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: March 28, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Po-Kai Hsu, Chen-Yi Weng, Jing-Yin Jhang, Yu-Ping Wang, Hung-Yueh Chen
  • Publication number: 20230091364
    Abstract: A magnetic tunnel junction (MTJ) device includes two magnetic tunnel junction elements and a magnetic shielding layer. The two magnetic tunnel junction elements are arranged side by side. The magnetic shielding layer is disposed between the magnetic tunnel junction elements. A method of forming said magnetic tunnel junction (MTJ) device includes the following steps. An interlayer including a magnetic shielding layer is formed. The interlayer is etched to form recesses in the interlayer. The magnetic tunnel junction elements fill in the recesses. Or, a method of forming said magnetic tunnel junction (MTJ) device includes the following steps. A magnetic tunnel junction layer is formed. The magnetic tunnel junction layer is patterned to form magnetic tunnel junction elements. An interlayer including a magnetic shielding layer is formed between the magnetic tunnel junction elements.
    Type: Application
    Filed: December 2, 2022
    Publication date: March 23, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wei Chen, Hui-Lin Wang, Yu-Ru Yang, Chin-Fu Lin, Yi-Syun Chou, Chun-Yao Yang
  • Publication number: 20230050587
    Abstract: A manufacturing method of a semiconductor device includes the following steps. A first inter-metal dielectric (IMD) layer is formed on a substrate. A cap layer is formed on the first IMD layer. A connection structure is formed on the substrate and penetrates the cap layer and the first IMD layer. A magnetic tunnel junction (MTJ) stack is formed on the connection structure and the cap layer. A patterning process is performed to the MTJ stack for forming a MTJ structure on the connection structure and removing the cap layer. A spacer is formed on a sidewall of the MTJ structure and a sidewall of the connection structure. A second IMD layer is formed on the first IMD layer and surrounds the MTJ structure. The dielectric constant of the first IMD layer is lower than the dielectric constant of the second IMD layer.
    Type: Application
    Filed: November 3, 2022
    Publication date: February 16, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chen-Yi Weng, Jing-Yin Jhang, Hui-Lin Wang, Chin-Yang Hsieh
  • Publication number: 20230050435
    Abstract: A hybrid random access memory for a system-on-chip (SOC), including a semiconductor substrate with a MRAM region and a ReRAM region, a first dielectric layer on the semiconductor substrate, multiple ReRAM cells in the first dielectric layer on the ReRAM region, a second dielectric layer above the first dielectric layer, and multiple MRAM cells in the second dielectric layer on the MRAM region.
    Type: Application
    Filed: October 26, 2022
    Publication date: February 16, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Kai Hsu, Hui-Lin Wang, Ching-Hua Hsu, Yi-Yu Lin, Ju-Chun Fan, Hung-Yueh Chen
  • Publication number: 20230038528
    Abstract: A semiconductor device includes a magnetic tunneling junction (MTJ) on a substrate, a spacer adjacent to the MTJ, a liner adjacent to the spacer, and a first metal interconnection on the MTJ. Preferably, the first metal interconnection includes protrusions adjacent to two sides of the MTJ and a bottom surface of the protrusions contact the liner directly.
    Type: Application
    Filed: October 18, 2022
    Publication date: February 9, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Yi-Wei Tseng, Chin-Yang Hsieh, Jing-Yin Jhang, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, I-Ming Tseng, Yu-Ping Wang
  • Patent number: 11557718
    Abstract: A semiconductor device includes a storage element on a substrate. The storage element has a tapered upper end structure. The tapered upper end structure includes a top electrode and a spacer surrounding the top electrode. A gap-fill dielectric layer is disposed around the spacer. A conductive cap layer covers the top electrode and the spacer. An inter-metal dielectric (IMD) layer is disposed on the conductive cap layer. A metal interconnection is disposed in the IMD layer and electrically connected to the top electrode through the conductive cap layer.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: January 17, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Hui-Lin Wang
  • Patent number: 11552241
    Abstract: A method for fabricating a semiconductor device includes the steps of: forming a first metal interconnection on a substrate; forming a stop layer on the first metal interconnection; removing the stop layer to form a first opening; forming an electromigration enhancing layer in the first opening; and forming a second metal interconnection on the electromigration enhancing layer. Preferably, top surfaces of the electromigration enhancing layer and the stop layer are coplanar.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: January 10, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Po-Kai Hsu, Hung-Yueh Chen, Yu-Ping Wang
  • Patent number: 11545521
    Abstract: A magnetic tunnel junction (MTJ) device includes two magnetic tunnel junction elements and a magnetic shielding layer. The two magnetic tunnel junction elements are arranged side by side. The magnetic shielding layer is disposed between the magnetic tunnel junction elements. A method of forming said magnetic tunnel junction (MTJ) device includes the following steps. An interlayer including a magnetic shielding layer is formed. The interlayer is etched to form recesses in the interlayer. The magnetic tunnel junction elements fill in the recesses. Or, a method of forming said magnetic tunnel junction (MTJ) device includes the following steps. A magnetic tunnel junction layer is formed. The magnetic tunnel junction layer is patterned to form magnetic tunnel junction elements. An interlayer including a magnetic shielding layer is formed between the magnetic tunnel junction elements.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: January 3, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wei Chen, Hui-Lin Wang, Yu-Ru Yang, Chin-Fu Lin, Yi-Syun Chou, Chun-Yao Yang
  • Publication number: 20220393103
    Abstract: A method for fabricating a magnetic random access memory (MRAM) device includes the steps of first forming a first magnetic tunneling junction (MTJ) on a substrate, forming a first top electrode on the first MTJ, and then forming a passivation layer around the first MTJ. Preferably, the passivation layer includes a V-shape and a valley point of the V-shape is higher than a top surface of the first top electrode.
    Type: Application
    Filed: June 30, 2021
    Publication date: December 8, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Si-Han Tsai, Ching-Hua Hsu, Chen-Yi Weng, Po-Kai Hsu, Jing-Yin Jhang
  • Patent number: 11522127
    Abstract: A manufacturing method of a semiconductor device includes the following steps. A first inter-metal dielectric (IMD) layer is formed on a substrate. A cap layer is formed on the first IMD layer. A connection structure is formed on the substrate and penetrates the cap layer and the first IMD layer. A magnetic tunnel junction (MTJ) stack is formed on the connection structure and the cap layer. A patterning process is performed to the MTJ stack for forming a MTJ structure on the connection structure and removing the cap layer. A spacer is formed on a sidewall of the MTJ structure and a sidewall of the connection structure. A second IMD layer is formed on the first IMD layer and surrounds the MTJ structure. The dielectric constant of the first IMD layer is lower than the dielectric constant of the second IMD layer.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: December 6, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chen-Yi Weng, Jing-Yin Jhang, Hui-Lin Wang, Chin-Yang Hsieh
  • Patent number: 11522013
    Abstract: A hybrid random access memory for a system-on-chip (SOC), including a semiconductor substrate with a MRAM region and a ReRAM region, a first dielectric layer on the semiconductor substrate, multiple ReRAM cells in the first dielectric layer on the ReRAM region, a second dielectric layer above the first dielectric layer, and multiple MRAM cells in the second dielectric layer on the MRAM region.
    Type: Grant
    Filed: September 27, 2020
    Date of Patent: December 6, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Kai Hsu, Hui-Lin Wang, Ching-Hua Hsu, Yi-Yu Lin, Ju-Chun Fan, Hung-Yueh Chen
  • Publication number: 20220376173
    Abstract: A method of forming a semiconductor memory device is disclosed. A top electrode layer is formed on the MTJ stack layer. A patterned buffer layer is formed to cover only the logic circuit region. A hard mask layer is formed on the top electrode layer and the patterned buffer layer. A patterned resist layer is formed on the hard mask layer. A first etching process is performed to etch the hard mask layer and the top electrode layer not covered by the patterned resist layer in the memory region and the hard mask layer, the patterned buffer layer and the top electrode layer in the logic circuit region, thereby forming a top electrode on the MTJ stack layer in the memory region and a remaining top electrode layer covering only the logic circuit region on the MTJ stack layer.
    Type: Application
    Filed: June 10, 2021
    Publication date: November 24, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Hui-Lin Wang
  • Patent number: 11508904
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) on a substrate; forming a first liner on the MTJ; forming a second liner on the first liner; forming an inter-metal dielectric (IMD) layer on the MTJ, and forming a metal interconnection in the IMD layer, the second liner, and the first liner to electrically connect the MTJ. Preferably, the first liner and the second liner are made of different materials.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: November 22, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Yi-Wei Tseng, Chin-Yang Hsieh, Jing-Yin Jhang, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, I-Ming Tseng, Yu-Ping Wang
  • Publication number: 20220367791
    Abstract: A magnetoresistive random access memory (MRAM) device includes a first array region and a second array region on a substrate, a first magnetic tunneling junction (MTJ) on the first array region, a first top electrode on the first MTJ, a second MTJ on the second array region, and a second top electrode on the second MTJ. Preferably, the first top electrode and the second top electrode include different nitrogen to titanium (N/Ti) ratios.
    Type: Application
    Filed: June 16, 2021
    Publication date: November 17, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Si-Han Tsai, Dong-Ming Wu, Chen-Yi Weng, Ching-Hua Hsu, Ju-Chun Fan, Yi-Yu Lin, Che-Wei Chang, Po-Kai Hsu, Jing-Yin Jhang
  • Publication number: 20220352459
    Abstract: A semiconductor device includes a substrate comprising a MTJ region and a logic region, a magnetic tunneling junction (MTJ) on the MTJ region, and a contact plug on the logic region. Preferably, the MTJ includes a bottom electrode layer having a gradient concentration, a free layer on the bottom electrode layer, and a top electrode layer on the free layer.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 3, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chia-Chang Hsu, Chen-Yi Weng, Chin-Yang Hsieh, Jing-Yin Jhang
  • Publication number: 20220336735
    Abstract: A method for fabricating a semiconductor device includes the steps of: forming a first inter-metal dielectric (IMD) layer on a substrate; forming a first metal interconnection and a second metal interconnection in the first IMD layer; forming a channel layer on the first metal interconnection and the second metal interconnection; forming a magnetic tunneling junction (MTJ) stack on the channel layer; and removing the MTJ stack to form a MTJ.
    Type: Application
    Filed: July 5, 2022
    Publication date: October 20, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Wei Chen, Po-Kai Hsu, Yu-Ping Wang, Hung-Yueh Chen
  • Publication number: 20220310902
    Abstract: A magnetoresistive random access memory (MRAM) structure, including a substrate and multiple MRAM cells on the substrate, wherein the MRAM cells are arranged in a memory region adjacent to a logic region. An ultra low-k (ULK) layer covers the MRAM cells, wherein the surface portion of ultra low-k layer is doped with fluorine, and dents are formed on the surface of ultra low-k layer at the boundaries between the memory region and the logic region.
    Type: Application
    Filed: April 28, 2021
    Publication date: September 29, 2022
    Inventors: Hui-Lin Wang, Ching-Hua Hsu, Si-Han Tsai, Shun-Yu Huang, Chen-Yi Weng, Ju-Chun Fan, Che-Wei Chang, Yi-Yu Lin, Po-Kai Hsu, Jing-Yin Jhang, Ya-Jyuan Hung