Patents by Inventor Huichao ZHANG

Huichao ZHANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240092679
    Abstract: The present invention discloses a fabrication method and use of a ?40 mm large-size and high-contrast fiber optic image inverter, belonging to the field of manufacturing of fiber optic imaging elements. The light-absorbing glass for preparing the ?40 mm large-size and high-contrast fiber optic image inverter consists of the following components in molar percentage: SiO2 60-69.9, Al2O3 1.0-10.0, B2O3 10.1-15.0, Na2O 1.0-8.0, K2O 3.0-10.0, MgO 0.1-1.0, CaO 0.5-5.0, ZnO 0-0.1, TiO2 0-0.1, ZrO2 0.1-1.0, Fe2O3 3.0-6.5, Co2O3 0.1-0.5, V2O5 0.51-1.5 and MoO3 0.1-1.0. The fiber optic image inverter has the advantages of low crosstalk of stray light, high resolution and high contrast.
    Type: Application
    Filed: July 20, 2023
    Publication date: March 21, 2024
    Inventors: Lei Zhang, Jinsheng Jia, Yue Zhao, Yu Shi, Huichao Xu, Haoyang Yu, Jing Zhang, Zhiheng Fan, Xian Zhang, Xiaofeng Tang, Puguang Song, Jiuwang Wang, Yun Wang, Yang Fu, Yajie Du, Yonggang Huang
  • Publication number: 20240067782
    Abstract: An aluminum borate whisker reinforced and toughened non-metallic matrix composite is provided, which specifically includes a non-metallic material reinforced and toughened with aluminum borate whiskers. The composite exhibits a higher bending strength and fracture toughness and a higher wear resistance. A method for preparing the composite is also provided. The method includes mixing the aluminum borate whiskers and the non-metallic material to form a mixture; and sintering the mixture by a vacuum hot press method, or molding the mixture.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Inventors: Yue Shi, Bi Jia, Jinliang Shi, Zhigang Zou, Yong Zhou, Yongjiang Di, Yin Liu, Huichao He, Rong Wang, Xueyi Wang, Hao Tian, Jun Zhu, Rui Tang, Xingyu Chen, Danxia Zhang
  • Patent number: 11642112
    Abstract: Disclosed are a flexible surgical instrument and a driving unit thereof. The flexible surgical instrument may comprise a flexible continuous body structure composed of a distal structural body, a middle connecting body and a proximal structural body linked in sequence. The driving unit is linked to the flexible continuous body structure. When a structural backbone driving mechanism in the driving unit drives the proximal structural body to turn in any direction, the distal structural body correspondingly turns in the opposite direction. A surgical end effector driving mechanism in the driving unit can drive a surgical end effector linked to the distal end of the distal structural body to implement the action control of the surgical end effector.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: May 9, 2023
    Assignee: BEIJING SURGERII TECHNOLOGY CO., LTD.
    Inventors: Kai Xu, Jiangran Zhao, Zhengchen Dai, Huichao Zhang, Huan Liu, Zenghui Liu, Zhixiong Yang, Zhijun Zhu
  • Patent number: 11357584
    Abstract: This invention relates to a method for detecting faults in the operating states of a surgical robotic system, wherein the surgical robotic system including a master computer, a master embedded computer and a plurality of slave embedded computers is provided; the master computer controls the master embedded computer and the slave embedded computers via the LAN router; the master embedded computer communicates with the slave embedded computers via the LAN router and a first communication bus. In the present invention, the master computer, the master embedded computer and the slave embedded computers can detect faults interactively. Safety and reliability of the operation of the surgical robotic system can be improved without increasing any additional detection components, and communication burden of the system can be effectively reduced. The present invention can be widely applied to a minimally invasive surgical robotic system.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: June 14, 2022
    Assignee: BEIJING SURGERII TECHNOLOGY CO., LTD.
    Inventors: Kai Xu, Bin Zhao, Zhengchen Dai, Jiangran Zhao, Huan Liu, Wukun Mei, Huichao Zhang, Wei Wei, Bo Liang
  • Patent number: 11241288
    Abstract: Disclosed is a flexible surgical instrument system, comprising a distal structural body comprising at least one distal structural segment each comprising a distal spacing disk, a fixing disk and structural backbones; a proximal structural body comprises at least one proximal structural segment each comprising a proximal spacing disk, a proximal fixing disk and structural backbones; a plurality of cable transmission mechanisms each comprising a gear set and a pulley-cable part, the gear set being operable to transfer a rotational motion to the pulley-cable part; and a driving unit comprising a motion transmission part comprising a plurality of proximal segment turning transmission chains to convert a rotational output into mutually reversed rotational motions, and transfer one of the mutually reversed rotational motions to one of the gear sets.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: February 8, 2022
    Assignee: BEIJING SURGERII TECHNOLOGY CO., LTD
    Inventors: Kai Xu, Zhengchen Dai, Huichao Zhang, Shu'an Zhang, Jiangran Zhao, Zhixiong Yang, Wei Wei
  • Patent number: 11234685
    Abstract: Disclosed is a flexible surgical instrument system (100), comprising a flexible surgical instrument (10) composed of a distal structural body (11), a proximal structural body (12), a driving transmission mechanism (13) and a middle connecting body (14), wherein a surgical end effector (111) is located at a distal end of the distal structural body (11), a proximal end of the distal structural body (11) is linked to the middle connecting body (14), and the driving transmission mechanism (13) is linked to the proximal structural body (12) via the middle connecting body (14); the distal structural body (11) comprises at least one distal structural segment (112, 113), wherein each distal structural segment (112, 113) comprises a distal fixing disk (115, 118) and structural backbones (116, 119); the proximal structural body (12) comprises at least one proximal structural segment (120, 121), wherein each proximal structural segment (120, 121) comprises a proximal fixing disk (122, 126), structural backbones (124, 12
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: February 1, 2022
    Assignee: BEIJING SURGERII TECHNOLOGY CO., LTD.
    Inventors: Kai Xu, Tianlai Dong, Zhengchen Dai, Jiangran Zhao, Huichao Zhang, Shu'an Zhang
  • Patent number: 11191425
    Abstract: Disclosed is a flexible surgical instrument system, comprising a distal structural body comprising at least one distal structural segment each comprising a distal fixing disk and structural backbones; a proximal structural body comprising at least one proximal structural segment each comprising a proximal fixing disk, structural backbones and driving backbones; a plurality of cable pulling mechanisms operable to convert a rotational motion into a linear motion to turn the at least one proximal structural segment; and a driving unit to input the rotational motion to the plurality of cable pulling mechanisms; the driving unit comprises: a plurality of driving shafts operable to transfer the rotational motion to the plurality of cable pulling mechanisms, and a first end of each of the plurality of driving shafts is connected with each of the plurality of cable pulling mechanisms.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: December 7, 2021
    Assignee: BEIJING SURGERII TECHNOLOGY CO., LTD.
    Inventors: Kai Xu, Shu'an Zhang, Huichao Zhang, Tianlai Dong, Zhengchen Dai, Jiangran Zhao, Zhaoyu Zhang, Huan Liu
  • Publication number: 20190231331
    Abstract: Disclosed are a flexible surgical instrument and a driving unit thereof. The flexible surgical instrument may comprise a flexible continuous body structure composed of a distal structural body, a middle connecting body and a proximal structural body linked in sequence. The driving unit is linked to the flexible continuous body structure. When a structural backbone driving mechanism in the driving unit drives the proximal structural body to turn in any direction, the distal structural body correspondingly turns in the opposite direction. A surgical end effector driving mechanism in the driving unit can drive a surgical end effector linked to the distal end of the distal structural body to implement the action control of the surgical end effector.
    Type: Application
    Filed: August 31, 2017
    Publication date: August 1, 2019
    Inventors: Kai XU, Jiangran ZHAO, Zhengchen DAI, Huichao ZHANG, Huan LIU, Zenghui LIU, Zhixiong YANG, Zhijun ZHU
  • Publication number: 20190208989
    Abstract: Disclosed is a flexible surgical instrument system, comprising a flexible surgical instrument (10). The flexible surgical instrument (10) comprises a flexible continuous body structure composed of a distal structural body (11), a proximal structural body (16) and a middle connecting body (15). The distal structural body (11) comprises a distal structural segment (12, 13), and the distal structural segment (12, 13) comprises distal spacing disks (121, 131), a distal fixing disk (122, 132) and structural backbones (123, 133). The proximal structural body (16) comprises a proximal structural segment (17, 18), and the proximal structural segment (17, 18) comprises proximal spacing disks (171, 181), a proximal fixing disk (172, 182) and structural backbones (173, 183). The middle connecting body (15) comprises channel fixing plates (152) and a structural backbone guide channel (151).
    Type: Application
    Filed: August 31, 2017
    Publication date: July 11, 2019
    Inventors: Kai XU, Shu'an ZHANG, Huichao ZHANG, Tianlai DONG, Zhengchen DAI, Jiangran ZHAO, Zhaoyu ZHANG, HUAN LIU
  • Publication number: 20190192246
    Abstract: This invention relates to a method for detecting faults in the operating states of a surgical robotic system, wherein the surgical robotic system including a master computer, a master embedded computer and a plurality of slave embedded computers is provided; the master computer controls the master embedded computer and the slave embedded computers via the LAN router; the master embedded computer communicates with the slave embedded computers via the LAN router and a first communication bus. In the present invention, the master computer, the master embedded computer and the slave embedded computers can detect faults interactively. Safety and reliability of the operation of the surgical robotic system can be improved without increasing any additional detection components, and communication burden of the system can be effectively reduced. The present invention can be widely applied to a minimally invasive surgical robotic system.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Inventors: Kai Xu, Bin Zhao, Zhengchen Dai, Jiangran Zhao, Huan Liu, Wukun Mei, Huichao Zhang, Wei Wei, Bo Liang
  • Publication number: 20190192242
    Abstract: Disclosed is a flexible surgical instrument system, comprising a flexible surgical instrument. The flexible surgical instrument comprises a flexible continuous body structure composed of a distal structural body, a proximal structural body and a middle connecting body. The distal structural body comprises a distal structural segment (12, 13), the distal structural segment comprising a distal spacing disk, a fixing disk and structural backbones. The proximal structural body comprises a proximal structural segment, the proximal structural segment comprising a proximal spacing disk, a proximal fixing disk and structural backbones. The middle connecting body comprises channel fixing plates and a structural backbone guide channel.
    Type: Application
    Filed: August 30, 2017
    Publication date: June 27, 2019
    Inventors: Kai XU, Zhengchen DAI, Huichao ZHANG, Shu'an ZHANG, Jiangran ZHAO, Zhixiong YANG, Wei WEI