Patents by Inventor Huihang Dong

Huihang Dong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11703755
    Abstract: Methods and apparatuses related to fiducial designs for fiducial markers on glass substrates, or other transparent or translucent substrates, are disclosed. Example fiducial designs can facilitate visual recognition by enhancing edge detection in visual perception. In example fiducial designs, optical features on glass substrates can re-direct light so as to present a bright image region. Such optical features can include surface relief patterns formed in a coating on the surface of glass substrates. An exemplary method for manufacturing the fiducial markers can involve transfers of a fiducial design across a master mold or plate, a submaster mold or plate, and a target glass substrate. A fiducial marker can facilitate the use of the substrate in a variety of applications, including machine vision systems that facilitate automated performance of manufacturing processes on input working material.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: July 18, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Huihang Dong, Ryan Rieck, Thomas Mercier
  • Patent number: 11360385
    Abstract: Methods and systems for manufacturing an optical waveguide include depositing an adhesion promoting layer on a substrate. Multiple curable resist droplets are dispensed on the adhesion promoting layer. The adhesion promoting layer is disposed between and contacts the substrate and the curable resist droplets. The curable resist droplets define an optical eyepiece layer such that a zero residual layer thickness (RLT) region of the optical eyepiece layer is free of the curable resist droplets. The optical eyepiece layer is incised from the substrate to form the optical waveguide.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: June 14, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Huihang Dong, Thomas Mercier, Vikramjit Singh, Kang Luo, Tasha Amit Mangaldas, William Hudson Welch, Qizhen Xue, Frank Y. Xu
  • Publication number: 20210405269
    Abstract: Methods and apparatuses related to fiducial designs for fiducial markers on glass substrates, or other transparent or translucent substrates, are disclosed. Example fiducial designs can facilitate visual recognition by enhancing edge detection in visual perception. In example fiducial designs, optical features on glass substrates can re-direct light so as to present a bright image region. Such optical features can include surface relief patterns formed in a coating on the surface of glass substrates. An exemplary method for manufacturing the fiducial markers can involve transfers of a fiducial design across a master mold or plate, a submaster mold or plate, and a target glass substrate. A fiducial marker can facilitate the use of the substrate in a variety of applications, including machine vision systems that facilitate automated performance of manufacturing processes on input working material.
    Type: Application
    Filed: June 30, 2021
    Publication date: December 30, 2021
    Inventors: Huihang DONG, Ryan RIECK, Thomas MERCIER
  • Patent number: 11199719
    Abstract: Methods and systems for qualifying a multi-layered optical stack include providing the multi-layered optical stack including a first optical layer and a second optical layer. The first optical layer includes a first pair of fiducial marks and the second optical layer includes a second pair of fiducial marks Each of the first pair are spaced laterally from each of the second pair such that the first pair and the second pair are visible through the optical stack. A first angle defined between a first reference line connecting the first pair and a global reference line is determined. A second angle defined between a second reference line connecting the second pair and the global reference line is determined. The multi-layered optical stack is qualified for use in the optical projection system based on whether a difference between the first angle and the second angle is less than a predetermined threshold.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: December 14, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Huihang Dong, Wendong Xing, Thomas Mercier, Ryan Rieck, Robert D. Tekolste, William Hudson Welch
  • Patent number: 11079522
    Abstract: Methods and apparatuses related to fiducial designs for fiducial markers on glass substrates, or other transparent or translucent substrates, are disclosed. Example fiducial designs can facilitate visual recognition by enhancing edge detection in visual perception. In example fiducial designs, optical features on glass substrates can re-direct light so as to present a bright image region. Such optical features can include surface relief patterns formed in a coating on the surface of glass substrates. An exemplary method for manufacturing the fiducial markers can involve transfers of a fiducial design across a master mold or plate, a submaster mold or plate, and a target glass substrate. A fiducial marker can facilitate the use of the substrate in a variety of applications, including machine vision systems that facilitate automated performance of manufacturing processes on input working material.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: August 3, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Huihang Dong, Ryan Rieck, Thomas Mercier
  • Publication number: 20210215943
    Abstract: Methods and systems for qualifying a multi-layered optical stack include providing the multi-layered optical stack including a first optical layer and a second optical layer. The first optical layer includes a first pair of fiducial marks and the second optical layer includes a second pair of fiducial marks Each of the first pair are spaced laterally from each of the second pair such that the first pair and the second pair are visible through the optical stack. A first angle defined between a first reference line connecting the first pair and a global reference line is determined. A second angle defined between a second reference line connecting the second pair and the global reference line is determined. The multi-layered optical stack is qualified for use in the optical projection system based on whether a difference between the first angle and the second angle is less than a predetermined threshold.
    Type: Application
    Filed: June 10, 2019
    Publication date: July 15, 2021
    Inventors: Huihang DONG, Wendong XING, Thomas MERCIER, Ryan RIECK, Robert D. TEKOLSTE, William Hudson WELCH
  • Patent number: 9627272
    Abstract: A patterning scheme to minimize dry/wet strip induced device degradation and resultant devices are provided. The method includes removing a workfunction material over a first device area of a structure, while protecting the workfunction material over a second device area of the structure with a first masking material. The method further includes applying a second masking material over the first device area and the first masking material. The method further includes removing the first masking material and the second masking material until the workfunction material is exposed over the second device area.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: April 18, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Huihang Dong, Wai-Kin Li
  • Patent number: 9589806
    Abstract: An IC structure including: a first replacement gate stack for the pFET, the first replacement gate stack including: an interfacial layer in a first opening in the dielectric layer; a high-k layer over the interfacial layer in the first opening; a pFET work function metal layer over the high-k layer in the first opening; and a first gate electrode layer over the pFET work function metal layer and substantially filling the first opening; and a second replacement gate stack for the nFET, the second gate stack laterally adjacent to the first gate stack and including: the interfacial layer in a second opening in the dielectric layer; the high-k layer over the interfacial layer in the second opening; a nFET work function metal layer over the high-k layer in the second opening; and a second gate electrode layer over the nFET work function metal layer and substantially filling the second opening.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: March 7, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ruqiang Bao, Unoh Kwon, Huihang Dong, John A. Fitzsimmons
  • Publication number: 20170062281
    Abstract: A patterning scheme to minimize dry/wet strip induced device degradation and resultant devices are provided. The method includes removing a workfunction material over a first device area of a structure, while protecting the workfunction material over a second device area of the structure with a first masking material. The method further includes applying a second masking material over the first device area and the first masking material. The method further includes removing the first masking material and the second masking material until the workfunction material is exposed over the second device area.
    Type: Application
    Filed: August 24, 2015
    Publication date: March 2, 2017
    Inventors: Huihang DONG, Wai-Kin LI
  • Patent number: 9472463
    Abstract: After forming an organic planarization layer (OPL) atop a substrate which includes a plurality of semiconductor fins and a gate structure thereon, the OPL is recessed such that uppermost surfaces of remaining portions of the OPL are located below an uppermost surface of the gate structure but above top surfaces of the semiconductor fins. The remaining portions of the OPL are patterned to expose semiconductor fins in a pFinFET region for subsequent ion implantation. Portions of the OPL that remain on the semiconductor fins in an nFinFET region act as an implantation mask to shield the semiconductor fins in the nFinFET region from the ion implantation.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: October 18, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huihang Dong, Wai-Kin Li
  • Patent number: 9443770
    Abstract: After forming an organic planarization layer (OPL) atop a substrate which includes a plurality of semiconductor fins and a gate structure thereon, the OPL is recessed such that uppermost surfaces of remaining portions of the OPL are located below an uppermost surface of the gate structure but above top surfaces of the semiconductor fins. The remaining portions of the OPL are patterned to expose semiconductor fins in a pFinFET region for subsequent ion implantation. Portions of the OPL that remain on the semiconductor fins in an nFinFET region act as an implantation mask to shield the semiconductor fins in the nFinFET region from the ion implantation.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: September 13, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huihang Dong, Wai-Kin Li
  • Patent number: 9312366
    Abstract: Embodiments of the present disclosure provide a method of processing an integrated circuit (IC) structure for metal gate replacement, the method comprising: providing a structure including a first semiconductor fin and a second semiconductor fin positioned over a buried insulator layer of a silicon-on-insulator (SOI) substrate, and a gate structure positioned over the first and second semiconductor fins, wherein the gate structure includes a gate dielectric layer and a metal layer positioned over the gate dielectric layer; forming a planarizing resist over the first and second semiconductor fins, wherein the planarizing resist includes: a first organic planarizing layer (OPL), and a second OPL over the first OPL; removing a portion of the second OPL; removing an exposed portion of the first OPL and a portion of the metal layer positioned over the second semiconductor fin; and forming a replacement metal gate (RMG) over the gate dielectric layer.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: April 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Huihang Dong, Wai-Kin Li
  • Publication number: 20150371904
    Abstract: After forming an organic planarization layer (OPL) atop a substrate which includes a plurality of semiconductor fins and a gate structure thereon, the OPL is recessed such that uppermost surfaces of remaining portions of the OPL are located below an uppermost surface of the gate structure but above top surfaces of the semiconductor fins. The remaining portions of the OPL are patterned to expose semiconductor fins in a pFinFET region for subsequent ion implantation. Portions of the OPL that remain on the semiconductor fins in an nFinFET region act as an implantation mask to shield the semiconductor fins in the nFinFET region from the ion implantation.
    Type: Application
    Filed: August 28, 2015
    Publication date: December 24, 2015
    Inventors: Huihang Dong, Wai-Kin Li
  • Publication number: 20150340292
    Abstract: After forming an organic planarization layer (OPL) atop a substrate which includes a plurality of semiconductor fins and a gate structure thereon, the OPL is recessed such that uppermost surfaces of remaining portions of the OPL are located below an uppermost surface of the gate structure but above top surfaces of the semiconductor fins. The remaining portions of the OPL are patterned to expose semiconductor fins in a pFinFET region for subsequent ion implantation. Portions of the OPL that remain on the semiconductor fins in an nFinFET region act as an implantation mask to shield the semiconductor fins in the nFinFET region from the ion implantation.
    Type: Application
    Filed: May 20, 2014
    Publication date: November 26, 2015
    Applicant: International Business Machines Corporation
    Inventors: Huihang Dong, Wai-Kin Li
  • Patent number: 9093387
    Abstract: A stack of a dielectric material layer and a metallic material layer are formed on a substrate. A first organic planarization layer, a non-metallic hard mask layer, and a photoresist layer are sequentially deposited over the metallic material layer. The photoresist layer is lithographically patterned, and the pattern in the photoresist layer is transferred through the non-metallic hard mask layer, the first organic planarization layer, and the metallic material layer to form a cavity. A second organic planarization layer is deposited within the cavity and over remaining portions of the photoresist layer. The second organic planarization layer and the photoresist layer are recessed, and the non-metallic hard mask layer is subsequently removed. Remaining portions of the first and second organic planarization layers are simultaneously removed to provide physically exposed surfaces of the patterned metallic material layer and a top surface of the dielectric material layer.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: July 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Scott D. Allen, Kuang-Jung Chen, Huihang Dong, Wai-Kin Li
  • Publication number: 20150194320
    Abstract: A stack of a dielectric material layer and a metallic material layer are formed on a substrate. A first organic planarization layer, a non-metallic hard mask layer, and a photoresist layer are sequentially deposited over the metallic material layer. The photoresist layer is lithographically patterned, and the pattern in the photoresist layer is transferred through the non-metallic hard mask layer, the first organic planarization layer, and the metallic material layer to form a cavity. A second organic planarization layer is deposited within the cavity and over remaining portions of the photoresist layer. The second organic planarization layer and the photoresist layer are recessed, and the non-metallic hard mask layer is subsequently removed. Remaining portions of the first and second organic planarization layers are simultaneously removed to provide physically exposed surfaces of the patterned metallic material layer and a top surface of the dielectric material layer.
    Type: Application
    Filed: January 8, 2014
    Publication date: July 9, 2015
    Applicant: International Business Machines Corporation
    Inventors: SCOTT D. ALLEN, Kuang-Jung Chen, Huihang Dong, Wai-Kin Li