Patents by Inventor Huiyan Zhang

Huiyan Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124853
    Abstract: Provided are transaminase mutants and uses thereof. The transaminase mutant is obtained by one or more amino acid mutations occurring in SEQ ID NO: 2 or is a mutant with a conserved amino acid mutation obtained by taking the sequence SEQ ID NO: 1 of a wild-type CvTA transaminase as a reference. Compared with wild-type transaminases, the catalytic activity of the mutant is improved to different degrees, so that the production efficiency of chiral amine compound synthesis may be improved.
    Type: Application
    Filed: July 6, 2021
    Publication date: April 18, 2024
    Inventors: Hao Hong, Gage James, Yi Xiao, Na Zhang, Xuecheng Jiao, Yulei Ma, Huiyan Mou, Zujian Wang, Kaihua Sun, Xiang Li, Tong Zhao, Shan Cao
  • Publication number: 20240117395
    Abstract: Provided is a method for synthesizing a chiral amine compound. A transaminase is used to transaminate a ketone substrate under the action of an amino donor, to obtain the chiral amine compound; and the conserved amino acid sequence region of the transaminase at least includes a region 1 (MAGLWCVN) and a region 2 (YNTFFKT). With the transaminase with the specific conserved amino acid sequence region to synthesize a large sterically hindered chiral amine, the enzyme catalytic reaction volume is small, the synthesizing route is short, the product yield is high, a high-cost noble metal is not required for catalysis under the synthesizing conditions, three wastes are reduced, and the production cost is saved.
    Type: Application
    Filed: July 6, 2021
    Publication date: April 11, 2024
    Inventors: Hao Hong, Gage James, Yi Xiao, Na Zhang, Xuecheng Jiao, Yulei Ma, Huiyan Mou, Zujian Wang, Kaihua Sun, Ru Jia, Fang Liu, Wenjing Liu
  • Publication number: 20240101428
    Abstract: A meshed catalyst based high-yield preparation and regeneration method for carbon nanotubes and hydrogen includes the following steps: step one, adding waste plastic into a low-temperature pyrolysis section, conducting slow heating, and continuously introducing nitrogen; step two, using a multilayer stainless steel mesh obtained through laminated pressing and vacuum sintering as a catalyst, introducing the volatiles into a high-temperature catalytic section, conducting a catalytic reaction under the action of a meshed stainless steel catalyst obtained through acid etching and calcination pretreatment, generating the carbon nanotubes on a surface of the catalyst, and meanwhile generating high-purity hydrogen; and step three, after temperature drop, conducting ultrasonic treatment on a stainless steel mesh after the reaction, achieving physical stripping of the carbon nanotubes from the stainless steel mesh, then placing the stainless steel mesh subjected to secondary calcination in a system for recycling, and
    Type: Application
    Filed: April 27, 2022
    Publication date: March 28, 2024
    Inventors: Huiyan ZHANG, Dongyang JIANG, Qingyu LIU, Ru HONG, Bo PENG, Rui XIAO
  • Publication number: 20230419073
    Abstract: The present disclosure provides a method for predicting gasification characteristics of biomass char, including the following steps: step 10): acquiring training data of biomass char gasification; step 20): establishing a BP neural network model including an input layer, a hidden layer and an output layer, input parameters of the BP neural network model being char making temperature, char specific surface area and gasification time, and output parameters being char conversion rate; step 30): training the BP neural network model by adopting the training data, and optimizing the BP neural network model by adopting a particle swarm optimization algorithm to obtain a BP neural network model with high prediction precision; and step 40): predicting the char conversion rate by using the BP neural network model with high prediction precision.
    Type: Application
    Filed: April 27, 2022
    Publication date: December 28, 2023
    Inventors: Huiyan ZHANG, Zhenting ZHA, Zefeng GE, Yuna MA
  • Publication number: 20230348804
    Abstract: A device for online co-production of carbon-containing precursors and high-quality oxygen-containing fuels from biomass pyrolysis gas includes a spray polymerization reactor, where a biomass pyrolysis gas inlet and a polymerization agent inlet are provided on the spray polymerization reactor, an outlet of the spray polymerization reactor is connected to an inlet of a catalytic reactor, and an outlet of the catalytic reactor is connected to an inlet of a condenser; a spray pipe is arranged at a top in the spray polymerization reactor, and a detachable collector for collecting the carbon-containing precursors is mounted at a bottom of the spray polymerization reactor; and a catalyst is arranged in the catalytic reactor, such that micromolecular pyrolysis gas is catalytically converted into the high-quality oxygen-containing fuels.
    Type: Application
    Filed: December 20, 2021
    Publication date: November 2, 2023
    Inventors: Huiyan ZHANG, Ziwei LI, Rui XIAO, Xiaowen LI
  • Patent number: 11760635
    Abstract: The present disclosure relates to a system and a method for preparing carbon nanofiber and hydrogen through continuous microwave pyrolysis. The system includes four apparatus. The melting and feeding apparatus is to heat and melt feedstocks. The microwave pyrolysis apparatus is for catalytic pyrolysis and includes a feedstock inlet, a gas outlet and a carbon outlet. The gas purification and utilization apparatus is for hydrogen purification and residual gas separation, The power generation apparatus includes a generator and a small internal combustion engine utilizing residual gas as fuel, and the generated smoke is conveyed to the melting and feeding apparatus for feedstocks melting. According to the present disclosure, a poly-generation system for co-producing high-performance carbon materials and hydrogen through plastic wastes with greatly increased energy utilization rate is formed to solve the technical problems of low product yield and high energy consumption in traditional pyrolysis.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: September 19, 2023
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Huiyan Zhang, YIhan Wang, Xiaodi Li
  • Publication number: 20230256356
    Abstract: The present disclosure relates to a pyrolysis bio-oil fractional condensation device and method capable of cooling medium self-circulation. The device includes a primary condensation system, a secondary condensation system and a cooling medium self-regulation heat exchange system. The primary condensation system uses the temperature-regulated cooling medium to condense the macromolecular tar by direct heat exchange with the pyrolysis volatiles. The condensed tar is heated, pushed and scraped with a rotary mechanism to prevent adhesion. The spray liquid in the secondary condensation system exchange heat with the uncondensed volatiles directly for secondary condensation.
    Type: Application
    Filed: December 20, 2021
    Publication date: August 17, 2023
    Inventors: Huiyan ZHANG, Shuping ZHANG, Bo PENG, Rui XIAO
  • Publication number: 20230192490
    Abstract: The present disclosure relates to a system and a method for preparing carbon nanofiber and hydrogen through continuous microwave pyrolysis. The system includes four apparatus. The melting and feeding apparatus is to heat and melt feedstocks. The microwave pyrolysis apparatus is for catalytic pyrolysis and includes a feedstock inlet, a gas outlet and a carbon outlet. The gas purification and utilization apparatus is for hydrogen purification and residual gas separation, The power generation apparatus includes a generator and a small internal combustion engine utilizing residual gas as fuel, and the generated smoke is conveyed to the melting and feeding apparatus for feedstocks melting. According to the present disclosure, a poly-generation system for co-producing high-performance carbon materials and hydrogen through plastic wastes with greatly increased energy utilization rate is formed to solve the technical problems of low product yield and high energy consumption in traditional pyrolysis.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 22, 2023
    Inventors: Huiyan ZHANG, Yihan WANG, Xiaodi LI
  • Publication number: 20230134219
    Abstract: A biomass pyrolysis device and a biomass pyrolysis method is for optimal matching of thermal energy and microwave energy, wherein the device comprises a power generation system, a drying device and a microwave pyrolysis device; wherein the drying device is a cylinder nested with a flue gas layer and a material layer, a material inlet of the drying device is connected with a feeding device, and a volatile outlet is connected with a condensing unit; the microwave pyrolysis device is connected with a material outlet of the drying device, and a pyrolysis gas outlet of the microwave pyrolysis device is connected with the condensing unit; the condensing unit is connected with the power generation system, and waste gas generated by the power generation system is introduced into the flue gas layer of the drying device.
    Type: Application
    Filed: December 22, 2020
    Publication date: May 4, 2023
    Inventors: Huiyan ZHANG, Shuping ZHANG, Qing DONG, Rui XIAO, Xiaodi LI
  • Publication number: 20230105763
    Abstract: A low-temperature plasma regeneration system and a low-temperature plasma regeneration method is for inactivated activated carbon, wherein the system comprises a gas supply system, a plasma reaction apparatus and a waste gas treatment apparatus, wherein the gas supply system is configured for supplying gas and water vapor; the plasma reaction apparatus comprises a top electrode, a grounded lower electrode, a regeneration reactor arranged between the electrodes, and a high-voltage alternating current power supply connected with the top electrode; a stirrer is arranged in the regeneration reactor, a gas inlet is arranged at the center position of the top of the reactor, and gas outlets are arranged around the reactor. The system of the present invention has a simple and compact structure, a convenient operation and a function of reaction-and-premix integration.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 6, 2023
    Inventors: Huiyan ZHANG, Jiawei WANG, Rui XIAO
  • Patent number: 9725653
    Abstract: Devices and methods for preparing oxygen-containing liquid fuel by bio-oil catalytic conversion. A device includes a biomass fast thermal cracking system for preparing bio-oil, a bio-oil oil-water separating system for separating the bio-oil into oil phase bio-oil and water phase bio-oil that is output to an oil phase bio-oil chemical chain hydrogen production system, and a water phase bio-oil catalytic hydrogenation system. The hydrogen production system outputs produced hydrogen to the water phase bio-oil catalytic hydrogenation system to prepare a liquid fuel. A method includes the steps: thermally cracking the biomass to prepare bio-oil, separating the water phase and the oil phase, producing hydrogen from the oil phase bio-oil through a chemical chain method so as to provide a hydrogen source for the water phase bio-oil to carry out two-stage catalytic hydrogenation in a slurry bed, and separating and purifying the hydrogenated products to obtain an oxygen-containing liquid fuel.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: August 8, 2017
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Rui Xiao, Huiyan Zhang, Yong Zhang, Dekui Shen
  • Publication number: 20150099908
    Abstract: Devices and methods for preparing oxygen-containing liquid fuel by bio-oil catalytic conversion. A device includes a biomass fast thermal cracking system for preparing bio-oil, a bio-oil oil-water separating system for separating the bio-oil into oil phase bio-oil and water phase bio-oil that is output to an oil phase bio-oil chemical chain hydrogen production system, and a water phase bio-oil catalytic hydrogenation system. The hydrogen production system outputs produced hydrogen to the water phase bio-oil catalytic hydrogenation system to prepare a liquid fuel. A method includes the steps: thermally cracking the biomass to prepare bio-oil, separating the water phase and the oil phase, producing hydrogen from the oil phase bio-oil through a chemical chain method so as to provide a hydrogen source for the water phase bio-oil to carry out two-stage catalytic hydrogenation in a slurry bed, and separating and purifying the hydrogenated products to obtain an oxygen-containing liquid fuel.
    Type: Application
    Filed: December 5, 2012
    Publication date: April 9, 2015
    Inventors: Rui Xiao, Huiyan Zhang, Yong Zhang, Dekui Shen
  • Publication number: 20130060070
    Abstract: The invention relates to methods for producing fluid hydrocarbon products, and more specifically, to methods for producing fluid hydrocarbon product via catalytic pyrolysis. The reactants comprise solid hydrocarbonaceous materials, and hydrogen or a source of hydrogen (e.g., an alcohol). The products may include specific aromatic compounds (e.g., benzene, toluene, naphthalene, xylene, etc.).
    Type: Application
    Filed: August 13, 2012
    Publication date: March 7, 2013
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: George W. Huber, Huiyan Zhang, Torren Carlson
  • Patent number: 7818019
    Abstract: The present invention relates to technique for optimized assignment of Abis transmission resources based on dynamic statistical time division multiplexing, the method comprising the steps of: assigning a set of 64 k TS's to GPRS/EGPRS services on an Abis link, the set of 64 k TS's shared among all BTS's connected to the Abis interface; a PCU assigning sufficient Abis transmission resources to a TRX based on the load thereof if the TRX has EGPRS services; a BSC interconnecting Abis transmission resources and BSC-PCU transmission resources and informing a BTS that said Abis transmission resources have been assigned to a TRE mapped to the TRX; the PCU reassigning bandwidth of the Abis transmission resources based on changes in the load of the TRX; in each TRX, all RTS's statistical-time-division-multiplexing all transmission resources of the TRX based on flow in different periods for different RTS's.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: October 19, 2010
    Assignee: Alcatel Lucent
    Inventors: Enyuan Qian, Huiyan Zhang, Lingfeng Lin, Jun Song, Yang Wu, Chunting Li, Yi Zhang, Ke Feng
  • Publication number: 20070177543
    Abstract: The present invention relates to technique for optimized assignment of Abis transmission resources based on dynamic statistical time division multiplexing, the method comprising the steps of: assigning a set of 64 k TS's to GPRS/EGPRS services on an Abis link, the set of 64 k TS's shared among all BTS's connected to the Abis interface; a PCU assigning sufficient Abis transmission resources to a TRX based on the load thereof if the TRX has EGPRS services; a BSC interconnecting Abis transmission resources and BSC-PCU transmission resources and informing a BTS that said Abis transmission resources have been assigned to a TRE mapped to the TRX; the PCU reassigning bandwidth of the Abis transmission resources based on changes in the load of the TRX; in each TRX, all RTS's statistical-time-division-multiplexing all transmission resources of the TRX based on flow in different periods for different RTS's.
    Type: Application
    Filed: January 25, 2007
    Publication date: August 2, 2007
    Applicant: Alcatel Lucent
    Inventors: Enyuan Qian, Huiyan Zhang, Lingfeng Lin, Jun Song, Yang Wu, Chunting Li, Yi Zhang, Ke Feng