Patents by Inventor Hulin Niu
Hulin Niu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12345665Abstract: A calculation method for fractal dimensions of shale pores includes steps as follows. S1: multiple shale samples from a target stratum of a study area are obtained, parameter values of geological parameters of each of the multiple shale samples are obtained, followed by dividing the multiple shale samples into target shale samples and experimental shale samples. S2: PCA is performed on the parameter values to obtain principal components representing a variation of the geological parameters. fractal dimensions are calculated based on an existing fractal dimension calculation method. S3: the principal components are used as independent variables and the fractal dimensions are used as dependent variables, followed by performing regression analysis to obtain a quantitative calculation model. S4: the fractal dimensions of the target shale sample are calculated according to the parameter values and the quantitative calculation model for the fractal dimension based on the parameter values.Type: GrantFiled: December 20, 2024Date of Patent: July 1, 2025Assignees: SOUTHWEST PETROLEUM UNIVERSITY, CHINA UNIVERSITY OF GEOSCIENCES, WUHAN, JIANGXI PROVINCIAL SHALE GAS. INVESTMENT COMPANY, LTDInventors: Xinyang He, Kun Zhang, Shu Jiang, Hulin Niu, Weiwei Liu, Songyang Wan, Chengzao Jia, Yan Song, Xiong Ding, Xueying Wang, Yi Shu, Tianyou Zhi, Daiyu Wu, Sihong Cheng, Yongjun Li, Yiting Qiao, Yi Zhang, Jiayi Liu, Lei Chen, Xuefei Yang, Fengli Han, Weishi Tang, Jingru Ruan, Hengfeng Gou, Yi Xiao, Lintao Li, Yipeng Liu, Ping Liu, Zeyun Wang, Laiting Ye, Meijia Wu, Lu Lu
-
Patent number: 12338732Abstract: A quantitative prediction method for gas content of deep marine shale includes: obtaining raw data of known wells; establishing relationship formulas between pore specific surface areas and adsorbed gas contents of a known well in an area as an adsorbed gas content quantitative prediction model; establishing relationship formulas between pore volumes and free gas contents of the known well as a free gas content quantitative prediction model; summing the adsorbed gas contents and corresponding free gas contents to obtain total gas contents; calculating adsorbed gas contents, free gas contents and total gas contents of the known wells; drawing a predicted adsorbed gas content contour map, a predicted free gas content contour map and a predicted total gas content contour map; and reading an adsorbed gas content, a free gas content and a total gas content of an unknown well in the area from the above contour maps.Type: GrantFiled: October 17, 2024Date of Patent: June 24, 2025Assignees: Southwest Petroleum University, Sinopec Southwest Petroleum Bureau Co., Ltd, PetroChina Zhejiang Oilfield CompanyInventors: Xinyang He, Kun Zhang, Hulin Niu, Chengzao Jia, Yan Song, Zhenxue Jiang, Shu Jiang, Xueying Wang, Nanxi Zhang, Xiaoxia Dong, Jun Dong, Ruisong Li, Tong Wang, Pu Huang, Jiasui Ouyang, Xingmeng Wang, Shoucheng Xu, Hanbing Zhang, Yubing Ji, Lei Chen, Xuefei Yang, Fengli Han, Weishi Tang, Jingru Ruan, Hengfeng Gou, Lintao Li, Yipeng Liu, Ping Liu
-
Publication number: 20250129717Abstract: A quantitative prediction method for gas content of deep marine shale includes: obtaining raw data of known wells; establishing relationship formulas between pore specific surface areas and adsorbed gas contents of a known well in an area as an adsorbed gas content quantitative prediction model; establishing relationship formulas between pore volumes and free gas contents of the known well as a free gas content quantitative prediction model; summing the adsorbed gas contents and corresponding free gas contents to obtain total gas contents; calculating adsorbed gas contents, free gas contents and total gas contents of the known wells; drawing a predicted adsorbed gas content contour map, a predicted free gas content contour map and a predicted total gas content contour map; and reading an adsorbed gas content, a free gas content and a total gas content of an unknown well in the area from the above contour maps.Type: ApplicationFiled: October 17, 2024Publication date: April 24, 2025Inventors: Xinyang He, Kun Zhang, Hulin Niu, Chengzao Jia, Yan Song, Zhenxue Jiang, Shu Jiang, Xueying Wang, Nanxi Zhang, Xiaoxia Dong, Jun Dong, Ruisong Li, Tong Wang, Pu Huang, Jiasui Ouyang, Xingmeng Wang, Shoucheng Xu, Hanbing Zhang, Yubing Ji, Lei Chen, Xuefei Yang, Fengli Han, Weishi Tang, Jingru Ruan, Hengfeng Gou, Lintao Li, Yipeng Liu, Ping Liu
-
Patent number: 12153004Abstract: A method for calculating a surface relaxation rate of a shale includes: a relaxation time T distribution curve and a pore throat radius r distribution curve are obtained through experiments; abscissas of the two distribution curves are standardized, and the abscissa of the relaxation time T distribution curve is expanded or shrunk to ensure an abscissa value corresponding to a maximum ordinate value in the transformed relaxation time T distribution curve is same as an abscissa value corresponding to a maximum ordinate value in the pore throat radius r distribution curve; straight lines with a number of N parallel to a y-axis of a combined curve graph including the two distribution curves are drawn and a ? value corresponding to each straight line is calculated; and ? value with the number of N are processed to obtain a final surface relaxation rate ??.Type: GrantFiled: August 29, 2024Date of Patent: November 26, 2024Assignees: Southwest Petroleum University, Sichuan Hengyi Petroleum Technology Services Co., Ltd, Shale Gas Research Institute, PetroChina Southwest Oil and Gas Field CompanyInventors: Xinyang He, Kun Zhang, Chengzao Jia, Yan Song, Hulin Niu, Jing Li, Yijia Wu, Jiayi Liu, Bo Li, Yiming Yang, Liang Xu, Yongyang Liu, Jia He, Jiajie Wu, Zhi Gao, Tian Tang, Cheng Yang, Lei Chen, Xuefei Yang, Fengli Han, Xueying Wang, Weishi Tang, Jingru Ruan, Hengfeng Gou, Lintao Li, Yipeng Liu, Ping Liu
-
Patent number: 12152977Abstract: A method for combined characterization of pore structure includes steps as follows. Firstly, CO2, N2 and high-pressure mercury intrusion porosimetry characterization curves are plotted based on actual measurement data, then, average values of the overlapping range of the CO2 and N2 characterization curves are calculated, and a function yi?=ƒ(x) is fitted. Each pore volume yi? corresponding to each pore diameter xi is calculated, and a curve is plotted with xi as a horizontal coordinate and yi? as a vertical coordinate, thereby obtaining a characterization curve of the overlapping range between CO2 and N2 adsorptions. The same data processing is used to process the overlapping range data of the N2 and high-pressure mercury intrusion porosimetry characterization curves, to obtain the characterization curve between them. The characterization curves are spliced with the original CO2, N2, and high-pressure mercury intrusion porosimetry characterization curves to obtain a combined characterization curve.Type: GrantFiled: September 3, 2024Date of Patent: November 26, 2024Assignees: Southwest Petroleum University, Oil & Gas Survey Center, China Geological Survey, SINOPEC Exploration CompanyInventors: Xueying Wang, Kun Zhang, Yanhua Lin, Hulin Niu, Yunbo Zhang, Xiangfeng Wei, Zhujiang Liu, Ruobing Liu, Jingyu Hao, Feiran Chen, Daojun Wang, Fubin Wei, Jiayi Liu, Lei Chen, Xuefei Yang, Fengli Han, Xinyang He, Jingru Ruan, Hengfeng Gou, Weishi Tang, Lintao Li, Yipeng Liu, Ping Liu