Patents by Inventor Hun-Hsien Chang

Hun-Hsien Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7054122
    Abstract: The present invention comprises an ESD clamp circuit used in an integrated circuit with plural power supply. The ESD clamp circuit, connected between core voltage source and low voltage source, is fabricated by a process which fabricates core circuit. The ESD clamp circuit has a low trigger voltage, so it can conduct large current to protect the core circuit before the core circuit is damaged.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: May 30, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Hui Chen, Hun-Hsien Chang
  • Patent number: 6885529
    Abstract: An object of the present invention is to provide a charged-device model (CDM) electrostatic discharge (ESD) protection circuit for an integrated circuit (IC). The ESD protection circuit comprises an ESD clamp device and a functional component. The ESD clamp device is coupled to a pad and a substrate having a first conductivity type. Under normal power operation, the ESD clamp device is closed. The functional component is formed on the substrate and coupled to the pad. The functional component has a first well having the first conductivity type and an isolating region having a second conductivity type for isolating the first well from the substrate. Under normal power operation, the functional component transmits signals between the IC and an external linkage. During an CDM ESD event, the CDM charges accumulated in the substrate are discharged via the ESD clamp circuit. Hence, the functional component is protected.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: April 26, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Limited
    Inventors: Ming-Dou Ker, Hun-Hsien Chang, Wen-Tai Wang
  • Patent number: 6838734
    Abstract: High-voltage-tolerant ESD protection devices (ESDPD) for deep-submicron CMOS process were activated between LDD implanting and forming sidewall spacers. ESD-Implant (ESDI) regions are located at the ESDPD, without covering the center region under the drain contact (DC). The ESDI LDD concentration and doping profile are deep to contain drain diffusion. Regions with the ESDI have a high junction breakdown voltage (JBV) and a low junction capacitance. After forming gate sidewall spacers, high doping concentration ions implanted into active D/S regions formed a shallower doping profile of the D/S diffusion. The drain has a JBV as without this ESDI, so the ESD current (ESDC) is discharged through the center junction region under the DC to bulk, far from the ESDPD surface channel region. The ESDPD sustains a high ESD level. In an original drain JBV of an MOS this ESDI method is unchanged, i.e.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: January 4, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Dou Ker, Tung-Yang Chen, Hun-Hsien Chang
  • Patent number: 6765771
    Abstract: An ESD protection component with a deep-N-well structure in CMOS technology and the relevant circuit designs are proposed in this invention. The ESD protection component comprises a lateral silicon controlled rectifier (SCR) and a deep N-well. The SCR comprises a P-type layer, an N-type layer, a first N-well and a first P-well. The P-type layer is used as an anode of the SCR; the N-type layer is used as a cathode of the SCR; the first N-well is located between the P-type layer and the N-type layer and is contacted with the P-type layer; and the first P-well is contacted to the first N-well and the N-type layer. The deep N-well is located between the first P-well and the P-substrate, and is used to isolate the electric connection between the P-substrate and the first P-well. A plurality of these ESD protection components arbitrarily connected in series increases the total holding voltage of ESD protection circuit, thus preventing occurrences of latch-up.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: July 20, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Dou Ker, Hun-Hsien Chang, Wen-Tai Wang
  • Patent number: 6671153
    Abstract: A diode string with very low leakage current is used in power supply ESD clamp circuits. By adding an CMOS-Controlled Lateral SCR device into the cascaded diode string, the leakage current of this new diode string with 6 cascaded diodes under 5 Volts (3.3 Volts) forward bias can be controlled below 2.1 (1.07) nA at a temperature of 125° C. in a 0.35 &mgr;m silicide CMOS process. The holding voltage of this design with the CMOS-Controlled Lateral SCR can be linearly adjusted by changing the number of the cascaded diodes in the diode string for the application among the power lines with different voltage levels. The ESD level of this ESD clamp circuit is greater than 8,000 Volts in the Human-Body-Model ESD test. The diodes string is suitable for portable or low-power CMOS Integrated Circuit (IC) devices.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: December 30, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Ming-Dou Ker, Wen-Yu Lo, Hun-Hsien Chang
  • Publication number: 20030227726
    Abstract: The present invention comprises an ESD clamp circuit used in an integrated circuit with plural power supply. The ESD clamp circuit, connected between core voltage source and low voltage source, is fabricated by a process which fabricates core circuit. The ESD clamp circuit has a low trigger voltage, so it can conduct large current to protect the core circuit before the core circuit is damaged.
    Type: Application
    Filed: March 7, 2003
    Publication date: December 11, 2003
    Inventors: Chung-Hui Chen, Hun-Hsien Chang
  • Patent number: 6576958
    Abstract: Novel PMOS-bound and NMOS-bound diodes for ESD protection, together with their application circuits, are disclosed in this invention. The PMOS-bound (or NMOS bound) diode has a PMOS (or an NMOS) structure. The source/drain region enclosed by the control gate of the PMOS (or NMOS) is used as an anode (or cathode) of the PMOS-bound (or NMOS-bound) diode. The base of the PMOS (or NMOS) is used as a cathode (or anode) of the PMOS-bound (or NMOS-bound) diode. The control gate prevents any shallow trench isolation region from forming beside the p-n junction of the PMOS-bound (or NMOS-bound) diode, such that the ESD sustaining level doesn't suffer from the formation of the STI regions. Furthermore, by ensuring proper bias to the control gate during an ESD event, the turn-on speed of the PMOS-bound or NMOS-bound diode can be increased, such that the overall ESD level of an IC chip is improved.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: June 10, 2003
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Dou Ker, Hun-Hsien Chang, Wen-Tai Wang
  • Patent number: 6566715
    Abstract: In this invention, a novel substrate-triggered technique is proposed to effectively improve the electrostatic discharge (ESD) robustness of integrated circuit (IC) products. The ESD protection circuit derived from the substrate-triggered technique is comprised of a metal-oxide-semiconductor (MOS) transistor and an ESD detection circuit. The MOS transistor is composed of a bulk region, a gate, a source region coupled to a power rail, and a drain region couple to a pad. The source region, the bulk region and the drain region further construct a parasitic bipolar junction transistor (BJT) The ESD detection circuit is located between, and connected to, the power rail and the pad. During normal operation, the ESD detection circuit maintains the coupling of the bulk region to the first power rail. During an ESD event, the ESD detection circuit biases the bulk region to trigger the BJT thereby releasing ESD stress.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: May 20, 2003
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Dou Ker, Tung-Yang Chen, Hun-Hsien Chang
  • Publication number: 20030089951
    Abstract: An implanting method forms high-voltage-tolerant ESD protection devices (ESDPD) for deep-submicron CMOS process activated between LDD implanting and forming sidewall spacers. ESD-Implant (ESDI) regions are located at the ESDPD, without covering the center region under the drain contact (DC). The ESDI LDD concentration and doping profile are deep to contain drain diffusion. Regions with the ESDI have a high junction breakdown voltage (JBV) and a low junction capacitance. After forming gate sidewall spacers, implant high doping concentration ions into active D/S regions forming a shallower doping profile of the D/S diffusion. The drain has a JBV as without this ESDI, so the ESD current (ESDC) is discharged through the center junction region under the DC to bulk, far from the ESDPD surface channel region. The ESDPD sustains a high ESD level. The original drain JBV of an MOS with this ESDI method is unchanged, i.e.
    Type: Application
    Filed: December 19, 2002
    Publication date: May 15, 2003
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Ming-Dou Ker, Tung-Yang Chen, Hun-Hsien Chang
  • Patent number: 6514839
    Abstract: An implanting method forms high-voltage-tolerant ESD protection devices (ESDPD) for deep-submicron CMOS process activated between LDD implanting and forming sidewall spacers. ESD-Implant (ESDI) regions are located at the ESDPD, without covering the center region under the drain contact (DC). The ESDI LDD concentration and doping profile are deep to contain drain diffusion. Regions with the ESDI have a high junction breakdown voltage (JBV) and a low junction capacitance. After forming gate sidewall spacers, implant high doping concentration ions into active D/S regions forming a shallower doping profile of the D/S diffusion. The drain has a JBV as without this ESDI, so the ESD current (ESDC) is discharged through the center junction region under the DC to bulk, far from the ESDPD surface channel region. The ESDPD sustains a high ESD level. The original drain JBV of an MOS with this ESDI method is unchanged, i.e.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: February 4, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Ming-Dou Ker, Tung-Yang Chen, Hun-Hsien Chang
  • Publication number: 20020181177
    Abstract: An object of the present invention is to provide a charged-device model (CDM) electrostatic discharge (ESD) protection circuit for an integrated circuit (IC). The ESD protection circuit comprises an ESD clamp device and a functional component. The ESD clamp device is coupled to a pad and a substrate having a first conductivity type. Under normal power operation, the ESD clamp device is closed. The functional component is formed on the substrate and coupled to the pad. The functional component has a first well having the first conductivity type and an isolating region having a second conductivity type for isolating the first well from the substrate. Under normal power operation, the functional component transmits signals between the IC and an external linkage. During an CDM ESD event, the CDM charges accumulated in the substrate are discharged via the ESD clamp circuit. Hence, the functional component is protected.
    Type: Application
    Filed: August 31, 2001
    Publication date: December 5, 2002
    Inventors: Ming-Dou Ker, Hun-Hsien Chang, Wen-Tai Wang
  • Publication number: 20020130390
    Abstract: The present invention proposes an ESD protection circuit with low input capacitance, suitable for an I/O pad. The ESD protection circuit includes a plurality of diodes and a power-rail ESD clamp circuit between power lines. The diodes are stacked and coupled between a first power line and the I/O pad. The ESD protection circuit between power lines is coupled between the first power line and a second power line. During normal operation, the diodes are reverse-biased and the ESD protection circuit between power lines is turned off. When an ESD event between the power line and the I/O pad occurs, the diodes are forward-biased, and the ESD protection circuit between power lines is turned on to conduct ESD current. The equivalent input capacitance of the ESD protection circuit of the present invention is very small, making it particularly suitable for the I/O port of high-frequency or high-speed IC.
    Type: Application
    Filed: September 4, 2001
    Publication date: September 19, 2002
    Inventors: Ming-Dou Ker, Hun-Hsien Chang, Wen-Tai Wang
  • Publication number: 20020122280
    Abstract: An ESD protection component with a deep-N-well structure in CMOS technology and the relevant circuit designs are proposed in this invention. The ESD protection component comprises a lateral silicon controlled rectifier (SCR) and a deep N-well. The SCR comprises a P-type layer, an N-type layer, a first N-well and a first P-well. The P-type layer is used as an anode of the SCR; the N-type layer is used as a cathode of the SCR; the first N-well is located between the P-type layer and the N-type layer and is contacted with the P-type layer; and the first P-well is contacted to the first N-well and the N-type layer. The deep N-well is located between the first P-well and the P-substrate, and is used to isolate the electric connection between the P-substrate and the first P-well. A plurality of these ESD protection components arbitrarily connected in series increases the total holding voltage of ESD protection circuit, thus preventing occurrences of latch-up.
    Type: Application
    Filed: June 22, 2001
    Publication date: September 5, 2002
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Dou Ker, Hun-Hsien Chang, Wen-Tai Wang
  • Patent number: 6444404
    Abstract: A process for forming an implanted ESD region, and for forming metal silicide blocking regions, using the same photolithographic mask for definition of these regions, has been developed. The process features the formation of an implanted ESD region, defined by a photoresist shape which in turn had been formed via exposure of a negative photoresist layer, using a specific photolithographic mask. Metal silicide regions are subsequently formed on regions of a semiconductor substrate, exposed in openings in an insulator layer, with the openings in the insulator layer defined via a photoresist shape, which in turn had been formed via exposure of a positive photoresist layer, using the same photolithographic mask previously used for definition of the implanted ESD region. In this invention we use only one photolithographic mask in the CMOS process to fabricate an ESD device having ESD implanted and metal silicide blocking regions, which can sustain higher ESD stress.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: September 3, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Tung-Yang Chen, Ming-Dou Ker, Hun-Hsien Chang
  • Publication number: 20020084490
    Abstract: Novel PMOS-bound and NMOS-bound diodes for ESD protection, together with their application circuits, are disclosed in this invention. The PMOS-bound (or NMOS bound) diode has a PMOS (or an NMOS) structure. The source/drain region enclosed by the control gate of the PMOS (or NMOS) is used as an anode (or cathode) of the PMOS-bound (or NMOS-bound) diode. The base of the PMOS (or NMOS) is used as a cathode (or anode) of the PMOS-bound (or NMOS-bound) diode. The control gate prevents any shallow trench isolation region from forming beside the p-n junction of the PMOS-bound (or NMOS-bound) diode, such that the ESD sustaining level doesn't suffer from the formation of the STI regions. Furthermore, by ensuring proper bias to the control gate during an ESD event, the turn-on speed of the PMOS-bound or NMOS-bound diode can be increased, such that the overall ESD level of an IC chip is improved.
    Type: Application
    Filed: April 18, 2001
    Publication date: July 4, 2002
    Inventors: Ming-Dou Ker, Hun-Hsien Chang, Wen-Tai Wang
  • Patent number: 6388850
    Abstract: An apparatus of preventing integrated circuits from interfering by electrostatic-discharge (ESD), applied in an internal circuit and an input pad, both coupled with a first power line and a second power line, comprises a voltage clamp circuit and a voltage bias circuit. The voltage clamp circuit, with a transistor, connects to the second power line for clamping potential level through the voltage clamp circuit. The voltage bias circuit, with at least one diode coupled in series, connects to the voltage clamp circuit and the first power line for biasing the voltage clamp circuit to the second power line.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: May 14, 2002
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Dou Ker, Chen-Chia Wang, Hun-Hsien Chang
  • Patent number: 6249410
    Abstract: An ESD protection circuit is connected to an integrated circuit to dissipate an electrostatic charge from an ESD source placed in contact with two terminals of the integrated circuit to prevent damage to the integrated circuits. The ESD protection circuit has a ESD shunting circuit for shunting the electrostatic charge from integrated circuit. The ESD shunting circuit has a first port connected to one terminal of the integrated circuit, a second port connected to another terminal of the integrated circuit, and a third port. The ESD protection circuit additionally has an ESD detection circuit. The ESD detection circuit has a first input port connected to the one terminal of the integrated circuit, a second input port connected to the other terminal of the integrated circuit, and an output port connected to the third port of the ESD shunting circuit.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: June 19, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Ming-Dou Ker, Hun-Hsien Chang
  • Patent number: 6144542
    Abstract: In this invention, a new whole-chip ESD protection scheme with the ESD buses has been proposed to solve the ESD protection issue of the CMOS IC having a large number of separated power lines. Multiple ESD buses, which are formed by the wide metal lines, have been added into the CMOS IC having a large number of separated power lines. The bi-directional ESD-connection cells are connected between the separated power lines and the ESD buses, but not between the separated power lines. The ESD current on the CMOS IC with more separated power lines are all conducted into the ESD buses, therefore the ESD current can be conducted by the ESD buses away from the internal circuits and quickly discharged through the designed ESD protection devices to ground. By using this new whole-chip ESD protection scheme with the ESD buses, the CMOS IC having more separated power lines can be still safely protected against ESD damages.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: November 7, 2000
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Dou Ker, Hun-Hsien Chang
  • Patent number: 6011681
    Abstract: CMOS VLSI chips with pin counts greater than 100 often have multiple power pins to supply sufficient current for circuit operations. In mixed voltage ICs there are separated power pins with different power supplies for specified power operations, and in these ICs the power supplies for the digital and analog circuits are often separated due to noise considerations. In such ICs with separated power pins, the interface circuits between the circuits with different power pins are vulnerable to ESD (electrostatic discharge) stress. Even though there are suitable ESD protection circuits around the input and output pins of the IC, unexpected ESD damage still happens to the interface circuits between the circuits with different power pins, so that a whole-chip ESD protection arrangement using bi-directional SCRs is provided to protect the CMOS ICs against ESD damage.
    Type: Grant
    Filed: August 26, 1998
    Date of Patent: January 4, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Dou Ker, Hun-Hsien Chang
  • Patent number: 6008684
    Abstract: An MOS-controlled, lateral SCR device including a semiconductor substrate of a first doping type; a first well region formed in the substrate and being of a second doping type which is different from the first doping type; a second well region formed in the substrate, being of the second doping type, and being spaced apart from the first well region so as to define an intermediate region separating the first and second well regions from each other; a first region formed within the first well region and extending into the intermediate region between the first and second well regions, the first region being of the second doping type; a second region formed within the second well region and extending into the intermediate region between the first and second well regions, the second region being of the second doping type; and a control gate bridging over the intermediate region between the first and second regions.
    Type: Grant
    Filed: October 23, 1996
    Date of Patent: December 28, 1999
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Dou Ker, Hun-Hsien Chang