Patents by Inventor Hun-Jan Tao

Hun-Jan Tao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7373941
    Abstract: A cavitation cleaning system and method for using the same to remove particulate contamination from a substrate including providing at least one substrate immersed in a cleaning solution said cleaning solution contained in a cleaning solution container. The container further includes means for producing gaseous cavitation bubbles of ultrasound energy, said gaseous cavitation bubbles arranged to contact at least a portion of the at least one substrate; applying ultrasound energy to create gaseous cavitation bubbles to contact the substrate to remove adhering residual particles in a substrate surface cleaning process; and, recirculating the cleaning solution through a particulate filtering means.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: May 20, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd
    Inventors: Chun-Li Chou, Hun-Jan Tao, Peng-Fu Hsu
  • Publication number: 20080099851
    Abstract: Semiconductor devices with dual-metal gate structures and fabrication methods thereof. A semiconductor substrate with a first doped region and a second doped region separated by an insulation layer is provided. A first metal gate stack is formed on the first doped region, and a second metal gate stack is formed on the second doped region. A sealing layer is disposed on sidewalls of the first gate stack and the second gate stack. The first metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a first metal layer on the high-k dielectric layer, a metal insertion layer on the first metal layer, a second metal layer on the metal insertion layer, and a polysilicon layer on the second metal layer. The second metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a second metal layer on the high-k dielectric layer, and a polysilicon layer on the second metal layer.
    Type: Application
    Filed: October 25, 2006
    Publication date: May 1, 2008
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Peng-Fu Hsu, Fong-Yu Yen, Yi-Shien Mor, Huan-Just Lin, Ying Jin, Hun-Jan Tao
  • Publication number: 20080093682
    Abstract: Semiconductor structures having a silicided gate electrode and methods of manufacture are provided. A device comprises a first silicided structure formed in a first active region and a second silicided structure formed in a second active region. The two silicided structures have different metal concentrations. A method of forming a silicided device comprises forming a polysilicon structure on the first and second device fabrication regions. Embodiments include replacing a first portion of the polysilicon structure on the first device fabrication region with a metal and replacing a second portion of the polysilicon structure on the second device fabrication region with the metal. Preferably, the second portion is different than the first portion. Embodiments further include reacting the polysilicon structures on the first and second device fabrication regions with the metal to form a silicide.
    Type: Application
    Filed: October 18, 2006
    Publication date: April 24, 2008
    Inventors: Liang-Gi Yao, Jin Ying, Hun-Jan Tao, Shih-Chang Chen, Mong-Song Liang
  • Publication number: 20080093675
    Abstract: A semiconductor structure includes a substrate, a gate stack on the substrate, a source/drain region adjacent the gate stack, a source/drain silicide region on the source/drain region, a protection layer on the source/drain silicide region, wherein a region over the gate stack is substantially free from the protection layer, and a contact etch stop layer (CESL) having a stress over the protection layer and extending over the gate stack.
    Type: Application
    Filed: October 18, 2006
    Publication date: April 24, 2008
    Inventors: Liang-Gi Yao, Shiang-Bau Wang, Huan-Just Lin, Peng-Fu Hsu, Jin Ying, Hun-Jan Tao
  • Publication number: 20080096336
    Abstract: An n-FET and a p-FET each have elevated source/drain structures. Optionally, the p-FET elevated-SOURCE/DRAIN structure is epitaxially grown from a p-FET recess formed in the substrate. Optionally, the n-FET elevated-SOURCE/DRAIN structure is epitaxially grown from an n-FET recess formed in the substrate. The n-FET and p-FET elevated-source/drain structures are both silicided, even though the structures may have different materials and/or different structure heights. At least a thermal treatment portion of the source/drain structure siliciding is performed simultaneously for the n-FET and p-FET elevated source/drain structures. Also, the p-FET gate electrode, the n-FET gate electrode, or both, may optionally be silicided simultaneously (same metal and/or same thermal treatment step) with the n-FET and p-FET elevated-source/drain structures, respectively; even though the gate electrodes may have different materials, different silicide metal, and/or different electrode heights.
    Type: Application
    Filed: October 18, 2006
    Publication date: April 24, 2008
    Inventors: Peng-Soon Lim, Yong-Tian Hou, Jin Ying, Hun-Jan Tao
  • Publication number: 20080085590
    Abstract: Generally disclosed is a method of a device comprising forming a polysilicon stack including a first and a second polysilicon layer with an intervening etch stop layer, wherein the first polysilicon layer height is at least one third a height of the polysilicon stack height, removing the second polysilicon layer and the etch stop layer, and reacting the first polysilicon layer with a metal to fully silicide the first polysilicon layer. Fully silicided (FUSI) gates can hence be formed with uniform gate height. The thin first polysilicon layer allows for siliciding with a lower thermal budge and with better uniformity of the silicide concentration throughout the layer.
    Type: Application
    Filed: October 5, 2006
    Publication date: April 10, 2008
    Inventors: Liang-Gi Yao, Hun-Jan Tao, Shih-Chang Chen, Mong-Song Liang
  • Patent number: 7354847
    Abstract: A process for trimming a photoresist layer during the fabrication of a gate electrode in a MOSFET is described. A bilayer stack with a top photoresist layer on a thicker organic underlayer is patternwise exposed with 193 nm or 157 nm radiation to form a feature having a width w1 in the top layer. A pattern transfer through the underlayer is performed with an anisotropic etch based on H2/N2 and SO2 chemistry. The feature formed in the bilayer stack is trimmed by 10 nm or more to a width w2 by a HBr/O2/Cl2 plasma etch. The pattern transfer through an underlying gate layer is performed with a third etch based on HBr/O2/Cl2 chemistry. The underlayer is stripped by an O2 ashing with no damage to the gate electrode. Excellent profile control of the gate electrode is achieved and a larger (w1?w2) is possible than in prior art methods.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: April 8, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Bor-Wen Chan, Yi-Chun Huang, Baw-Ching Perng, Hun-Jan Tao
  • Patent number: 7354524
    Abstract: A method of processing multi-layer films, the method including: (1) processing a plurality of layers according to selected parameters, (2) determining a plurality of optical characteristics each associated with one of the plurality of layers and determined during the processing of the associated one of the plurality of layers, and (3) determining dynamic processing progressions each based on one of the plurality of optical characteristics that is associated with a particular one of the plurality of layers undergoing the processing.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: April 8, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hui Ou Yang, Miao-Ju Hsu, Chao-Cheng Chen, Hun-Jan Tao
  • Publication number: 20080070395
    Abstract: A semiconductor device is disclosed that includes: a substrate; a first high-k dielectric layer; a second high-k dielectric layer formed of a different high-k material; and a metal gate. In another form, a method of forming a semiconductor device is disclosed that includes: providing a substrate; forming a first high-k dielectric layer above the substrate; forming a second dielectric layer of a different high-k material above the first dielectric layer; and forming a gate structure above the second dielectric layer. In yet another form, a method of forming a semiconductor device is disclosed that includes: providing a substrate; forming an interfacial layer above the substrate; forming a first high-k dielectric layer above the interfacial layer; performing a nitridation technique; performing an anneal; forming a second high-k dielectric layer of a different high-k material above the first dielectric layer; and forming a metal gate structure above the second dielectric layer.
    Type: Application
    Filed: September 15, 2006
    Publication date: March 20, 2008
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Fong-Yu Yen, Cheng-Lung Hung, Peng-Fu Hsu, Vencent S. Chang, Yong-Tian Hou, Jin Ying, Hun-Jan Tao
  • Patent number: 7341943
    Abstract: A method for post-etch copper cleaning uses a hydrogen plasma with a trace gas additive constituting about 3-10 percent of the plasma by volume to clean a copper surface exposed by etching. The trace gas may be atomic nitrogen or other species having an atomic mass of 15 or greater. The trace gas adds a sputtering aspect to the plasma cleaning and removes polymeric etch by-products and polymeric and other residuals formed during the deposition of dielectric materials or etch stop layers over the copper surface. An anti-corrosion solvent may be used to passivate the copper surface prior to formation of the dielectric materials or etch stop layers.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: March 11, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Nan Yeh, Miao-Ju Hsu, Hun-Jan Tao
  • Publication number: 20080050879
    Abstract: A method of forming a metal-containing gate includes forming a high-k dielectric layer over a substrate. A process using an oxygen-containing solution is provided to process the high-k dielectric layer. A metal-containing layer is formed over the high-k dielectric layer. The high-k dielectric layer and metal-containing layer are patterned, thereby defining a gate structure.
    Type: Application
    Filed: August 23, 2006
    Publication date: February 28, 2008
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cheng-Lung Hung, Peng-Fu Hsu, Jin Ying, Hun-Jan Tao
  • Publication number: 20080001237
    Abstract: Disclosed is a semiconductor device having a substrate, an interfacial layer formed on said substrate, a nitrogen-containing high dielectric constant (high-k) layer formed on said interfacial layer, and a metal electrode on said nitrogen-containing high-k layer. Also disclosed is a method of forming a transistor including forming on a substrate an interfacial layer comprising silicon and oxygen, depositing on the interfacial layer a high-k dielectric material, nitriding the high-k dielectric material, depositing a metal layer on the high-k dielectric material, and patterning the metal layer, the high-k dielectric material, and the interfacial layer to form a gate stack.
    Type: Application
    Filed: June 29, 2006
    Publication date: January 3, 2008
    Inventors: Vincent S. Chang, Peng-Fu Hsu, Fong-Yu Yen, Yong-Tian Hou, Jin Ying, Hun-Jan Tao
  • Publication number: 20070296002
    Abstract: A semiconductor structure includes a semiconductor substrate having a first surface and a second surface opposite the first surface, a gate dielectric over the first surface of the semiconductor substrate, a gate electrode over the gate dielectric, a source/drain region having at least a portion in the semiconductor substrate, a dielectric layer having a first surface and a second surface opposite the first surface wherein the first surface of the dielectric layer adjoins the second surface of the semiconductor substrate, and a contact plug in the dielectric layer, wherein the contact plug extends from a bottom side of the source/drain region to the second surface of the dielectric layer.
    Type: Application
    Filed: June 27, 2006
    Publication date: December 27, 2007
    Inventors: Mong Song Liang, Hun-Jan Tao
  • Publication number: 20070287199
    Abstract: A method of forming a semiconductor structure includes providing a semiconductor substrate, performing a hydrogen annealing to the semiconductor substrate, forming a base oxide layer after the step of hydrogen annealing, and forming a high-k dielectric layer on the base oxide layer.
    Type: Application
    Filed: June 9, 2006
    Publication date: December 13, 2007
    Inventors: Peng-Fu Hsu, Jin Ying, Hun-Jan Tao
  • Patent number: 7307009
    Abstract: A method of defining a patterned, conductive gate structure for a MOSFET device on a semiconductor substrate includes forming a conductive layer over the semiconductor substrate and forming a capping insulator layer over the conductive layer. An anti-reflective coating (ARC) layer is formed over the capping insulator layer and a patterned photoresist shape is formed on the ARC layer. A first etch procedure using the photoresist shape as an etch mask defines a stack comprised of an ARC shape and a capping insulator shape. A second etch procedure using the stack as an etch mask defines the patterned, conductive gate structure in the conductive layer.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: December 11, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Li-Te S. Lin, Fang-Cheng Chen, Huin-Jer Lin, Yuan-Hung Chiu, Hun-Jan Tao
  • Patent number: 7301645
    Abstract: A method of monitoring a critical dimension of a structural element in an integrated circuit is provided comprising the following steps: collecting an optical interference endpoint signal produced during etching one or more layers to form the structural element; and determining based upon the optical interference endpoint signal the critical dimension of the structural element.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: November 27, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shiang-Bau Wang, Yuan-Hung Chiu, Hun-Jan Tao, Chao-Tzung Tsai
  • Patent number: 7294544
    Abstract: A method for fabricating an improved metal-insulator-metal capacitor is achieved. An insulating layer is provided overlying conducting lines on a semiconductor substrate. Via openings through the insulating layer to the conducting lines are filled with metal plugs. A first metal layer is deposited overlying the insulating layer and the metal plugs. A capacitor dielectric layer is deposited overlying the first metal layer wherein capacitor dielectric layer is deposited as a dual layer, each layer deposited within a separate chamber whereby pinholes are eliminated. A second metal layer and a barrier metal layer are deposited overlying the capacitor dielectric layer. The second metal layer and the barrier metal layer are patterned to form a top plate electrode. Thereafter, the capacitor dielectric layer and the first metal layer are patterned to form a bottom plate electrode completing fabrication of a metal-insulator-metal capacitor.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: November 13, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., ltd.
    Inventors: Yen-Shih Ho, Jau-Yuann Chung, Chun-Hon Chen, Hun-Jan Tao
  • Patent number: 7276417
    Abstract: A method for forming stressors in a semiconductor substrate is provided. The method includes providing a semiconductor substrate including a first device region and a second device region, forming shallow trench isolation (STI) regions with a high-shrinkage dielectric material in the first and the second device regions wherein the STI regions define a first active region in the first device region and a second active region in the second device region, forming an insulation mask over the STI region and the first active region in the first device region wherein the insulation mask does not extend over the second device region, and performing a stress-tuning treatment to the semiconductor substrate. The first active region and second active region have tensile stress and compressive stress respectively. An NMOS and a PMOS device are formed on the first and second active regions, respectively.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: October 2, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Ting Tseng, Yu-Lien Huang, Hao-Ming Lien, Ling-Yen Yeh, Hun-Jan Tao
  • Publication number: 20070222000
    Abstract: A method of forming a silicided gate on a substrate having active regions is provided. The method comprises forming silicide in the active regions and a portion of the gate, leaving a remaining portion of the gate unsilicided; forming a shielding layer over the active regions and gate after the forming step; forming a coating layer over portions of the shielding layer over the active regions; opening the shielding layer to expose the gate, wherein the coating layer protects the portions of the shielding layer over the active regions during the opening step; depositing a metal layer over the exposed gate; and annealing to cause the metal to react with the gate to silicidize at least a part of the remaining portion of the gate.
    Type: Application
    Filed: May 31, 2007
    Publication date: September 27, 2007
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Bor-Wen Chan, Jyu-Horng Shieh, Hun-Jan Tao
  • Patent number: RE39913
    Abstract: The invention is a process for reducing variations in CD from wafer to wafer. It begins by increasing all line widths in the original pattern data file by a fixed amount that is sufficient to ensure that all lines will be wider than the lowest acceptable CD value. Using a reticle generated from this modified data file, the pattern is formed in photoresist and the resulting CD value is determined. If this turns out be outside (above) the acceptable CD range, the amount of deviation from the ideal CD value is determined and fed into suitable software that calculates the control parameters (usually time) for an ashing routine. After ashing, the lines will have been reduced in width by the amount necessary to obtain the correct CD. A fringe benefit of this trimming process is that edge roughness of the photoresist lines is reduced and line feet are removed.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: November 6, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hun-Jan Tao, Huan-Just Lin, Fang-Cheng Chen