Patents by Inventor Hun Sang Kim

Hun Sang Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240143463
    Abstract: An apparatus includes a processor configured to execute instructions, and a memory storing the instructions, which when executed by the processor configure the processor to generate system error prediction data using an error prediction neural network provided with one of a plurality of log data sequences generated by pre-processing a plurality of log data pieces of component log data of a system. The system error prediction data comprises information of a plurality of system errors occurring at a plurality of respective timepoints.
    Type: Application
    Filed: June 22, 2023
    Publication date: May 2, 2024
    Applicants: SAMSUNG ELECTRONICS CO., LTD., Korea University Research and Business Foundation
    Inventors: Uiseok SONG, Seoung Bum KIM, Jaehoon KIM, Byungwoo BANG, Junyeon LEE, Jiyoon LEE, Yoon Sang CHO, Hansam CHO, Minkyu KIM, Hun Seong CHOI
  • Patent number: 11094511
    Abstract: Embodiments of the present disclosure generally provide an apparatus and methods for processing a substrate. More particularly, embodiments of the present disclosure provide a processing chamber having an enhanced processing efficiency at an edge of a substrate disposed in the processing chamber. In one embodiment, a processing chamber comprises a chamber body defining an interior processing region in a processing chamber, a showerhead assembly disposed in the processing chamber, wherein the showerhead assembly has multiple zones with an aperture density higher at an edge zone than at a center zone of the showerhead assembly, a substrate support assembly disposed in the interior processing region of the processing chamber, and a focus ring disposed on an edge of the substrate support assembly and circumscribing the substrate support assembly, wherein the focus ring has a step having a sidewall height substantially similar to a bottom width.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 17, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Changhun Lee, Michael D. Willwerth, Valentin N. Todorow, Hean Cheal Lee, Hun Sang Kim
  • Patent number: 10770329
    Abstract: A gas flow is described to reduce condensation with a substrate processing chuck. In one example, a workpiece holder in the chamber having a puck to carry the workpiece for fabrication processes, a top plate thermally coupled to the puck, a cooling plate fastened to and thermally coupled to the top plate, the cooling plate having a cooling channel to carry a heat transfer fluid to transfer heat from the cooling plate, a base plate fastened to the cooling plate opposite the puck, and a dry gas inlet of the base plate to supply a dry gas under pressure to a space between the base plate and the cooling plate to drive ambient air from between the base plate and the cooling plate.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: September 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Hun Sang Kim, Michael D. Willwerth
  • Publication number: 20200152431
    Abstract: Embodiments of the present disclosure generally provide an apparatus and methods for processing a substrate. More particularly, embodiments of the present disclosure provide a processing chamber having an enhanced processing efficiency at an edge of a substrate disposed in the processing chamber. In one embodiment, a processing chamber comprises a chamber body defining an interior processing region in a processing chamber, a showerhead assembly disposed in the processing chamber, wherein the showerhead assembly has multiple zones with an aperture density higher at an edge zone than at a center zone of the showerhead assembly, a substrate support assembly disposed in the interior processing region of the processing chamber, and a focus ring disposed on an edge of the substrate support assembly and circumscribing the substrate support assembly, wherein the focus ring has a step having a sidewall height substantially similar to a bottom width.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 14, 2020
    Inventors: Changhun LEE, Michael D. WILLWERTH, Valentin N. TODOROW, Hean Cheal LEE, Hun Sang KIM
  • Patent number: 10186444
    Abstract: A gas flow is described to reduce condensation with a substrate processing chuck. In one example, a workpiece holder in the chamber having a puck to carry the workpiece for fabrication processes, a top plate thermally coupled to the puck, a cooling plate fastened to and thermally coupled to the top plate, the cooling plate having a cooling channel to carry a heat transfer fluid to transfer heat from the cooling plate, a base plate fastened to the cooling plate opposite the puck, and a dry gas inlet of the base plate to supply a dry gas under pressure to a space between the base plate and the cooling plate to drive ambient air from between the base plate and the cooling plate.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: January 22, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Hun Sang Kim, Michael D. Willwerth
  • Patent number: 9627216
    Abstract: Embodiments of methods for forming features in a silicon containing layer of a substrate disposed on a substrate support are provided herein. In some embodiments, a method for forming features in a silicon containing layer of a substrate disposed on a substrate support in a processing volume of a process chamber includes: exposing the substrate to a first plasma formed from a first process gas while providing a bias power to the substrate support, wherein the first process gas comprises one or more of a chlorine-containing gas or a bromine containing gas; and exposing the substrate to a second plasma formed from a second process gas while no bias power is provided to the substrate support, wherein the second process gas comprises one or more of an oxygen-containing gas or nitrogen gas, and wherein a source power provided to form the first plasma and the second plasma is continuously provided.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: April 18, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Byungkook Kong, Hoon Sang Lee, Jinsu Kim, Ho Jeong Kim, Xiaosong Ji, Hun Sang Kim, Jinhan Choi
  • Publication number: 20160276197
    Abstract: A gas flow is described to reduce condensation with a substrate processing chuck. In one example, a workpiece holder in the chamber having a puck to carry the workpiece for fabrication processes, a top plate thermally coupled to the puck, a cooling plate fastened to and thermally coupled to the top plate, the cooling plate having a cooling channel to carry a heat transfer fluid to transfer heat from the cooling plate, a base plate fastened to the cooling plate opposite the puck, and a dry gas inlet of the base plate to supply a dry gas under pressure to a space between the base plate and the cooling plate to drive ambient air from between the base plate and the cooling plate.
    Type: Application
    Filed: March 20, 2015
    Publication date: September 22, 2016
    Inventors: Hun Sang Kim, Michael D. Willwerth
  • Patent number: 9425058
    Abstract: Methods of patterning a blanket layer (a target etch layer) on a substrate are described. The methods involve multiple patterning steps of a mask layer several layers above the target etch layer. The compound pattern, made from multiple patterning steps, is later transferred in one set of operations through the stack to save process steps.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: August 23, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Hun Sang Kim, Jinhan Choi, Shinichi Koseki
  • Patent number: 9287124
    Abstract: In one embodiment, a method is proposed for etching a boron dope hardmask layer. The method includes flowing a process gas comprising at least CH4 into a processing chamber. Forming a plasma in the process chamber from the process gas and etching the boron doped hardmask layer in the presence of the plasma. In other embodiments, the process gas utilized to etch the boron doped hardmask layer includes CH4, Cl2, SF6 and O2.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: March 15, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Byungkook Kong, Jun Wan Kim, Wonmo Ahn, Jeong Hyun Yoo, Hun Sang Kim
  • Publication number: 20160027654
    Abstract: Methods of patterning a blanket layer (a target etch layer) on a substrate are described. The methods involve multiple patterning steps of a mask layer several layers above the target etch layer. The compound pattern, made from multiple patterning steps, is later transferred in one set of operations through the stack to save process steps.
    Type: Application
    Filed: July 24, 2014
    Publication date: January 28, 2016
    Inventors: Hun Sang Kim, Jinhan Choi, Shinichi Koseki
  • Publication number: 20150371889
    Abstract: Methods for processing a substrate include (a) providing a substrate comprising a silicon germanium layer and a patterned mask layer atop the silicon germanium layer to define a feature in the silicon germanium layer; (b) exposing the substrate to a first plasma formed from a first process gas to etch a feature into the silicon germanium layer; (c) subsequently exposing the substrate to a second plasma formed from a second process gas to form an oxide layer on a sidewall and a bottom of the feature; (d) exposing the substrate to a third plasma formed from a third process gas to etch the oxide layer from the bottom of the feature; and (e) repeating (b)-(d) to form the feature in the first layer to a desired depth, wherein the first process gas, the second process gas and the third process gas are not the same.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 24, 2015
    Inventors: HUN SANG KIM, WONMO AHN, SHINICHI KOSEKI, JINHAN CHOI, SEAN KANG
  • Publication number: 20150099345
    Abstract: Embodiments of methods for forming features in a silicon containing layer of a substrate disposed on a substrate support are provided herein. In some embodiments, a method for forming features in a silicon containing layer of a substrate disposed on a substrate support in a processing volume of a process chamber includes: exposing the substrate to a first plasma formed from a first process gas while providing a bias power to the substrate support, wherein the first process gas comprises one or more of a chlorine-containing gas or a bromine containing gas; and exposing the substrate to a second plasma formed from a second process gas while no bias power is provided to the substrate support, wherein the second process gas comprises one or more of an oxygen-containing gas or nitrogen gas, and wherein a source power provided to form the first plasma and the second plasma is continuously provided.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 9, 2015
    Inventors: BYUNGKOOK KONG, HOON SANG LEE, JINSU KIM, HO JEONG KIM, XIAOSONG JI, HUN SANG KIM, JINHAN CHOI
  • Publication number: 20150064914
    Abstract: In one embodiment, a method is proposed for etching a boron dope hardmask layer. The method includes flowing a process gas comprising at least CH4 into a processing chamber. Forming a plasma in the process chamber from the process gas and etching the boron doped hardmask layer in the presence of the plasma. In other embodiments, the process gas utilized to etch the boron doped hardmask layer includes CH4, Cl2, SF6 and O2.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 5, 2015
    Inventors: Byungkook KONG, Jun Wan KIM, Wonmo AHN, Jeong Hyun YOO, Hun Sang KIM
  • Publication number: 20150064880
    Abstract: Methods for performing post etch treatments on silicon surfaces etched using halogen chemistry are provided. The methods may be performed in-situ a chamber in which the silicon surfaces where etch, ex-situ the chamber, or in a hybrid process that combines both in-situ and ex-situ post etch treatment processes. In one embodiment the post etch treatment process includes exposing a substrate having a silicon surface etched using halogen chemistry to a gas mixture comprising CxHy and oxygen, wherein x and y are integers, forming a plasma from the gas mixture, binding halogen residues with species comprising the plasma to form non-volatile halogen containing elements, and pumping the non-volatile halogen containing elements from a chamber containing the substrate.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Inventors: Jun Wan KIM, Hun Sang KIM, Changhun LEE, Ho Jeong KIM, Yi ZHOU
  • Publication number: 20140212994
    Abstract: Embodiments of the present disclosure generally provide apparatus and method for improving processing uniformity by reducing external magnetic noises. One embodiment of the present disclosure provides an apparatus for processing semiconductor substrates. The apparatus includes a chamber body defining a vacuum volume for processing one or more substrate therein, and a shield assembly for shielding magnetic flux from the chamber body disposed outside the chamber body, wherein the shield assembly comprises a bottom plate disposed between the chamber body and the ground to shield magnetic flux from the earth.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 31, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Hun Sang KIM, Sang Wook KIM, Anisul H. KHAN
  • Patent number: 8293656
    Abstract: A selective self-aligned dual patterning method. The method includes performing a single lithography operation to form a patterned mask having a narrow feature in a region of a substrate that is to a have pitch-reduced feature and a wide feature in a region of the substrate that is to have a non-pitch-reduced feature. Using the patterned mask, a template mask is formed with a first etch and the patterned mask is then removed from the narrow feature while being retained over the wide feature. The template mask is then thinned with a second etch to introduce a thickness delta in the template mask between the narrow and wide features. A spacer mask is then formed and the thinned narrow template mask is removed to leave a pitch double spacer mask while the thick wide template mask feature is retained to leave a non-pitch reduced mask.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: October 23, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Hun Sang Kim, Hyungje Woo, Shinichi Koseki, Eda Tuncel, Chung Liu
  • Patent number: 8133819
    Abstract: Etching of carbonaceous layers with an etchant gas mixture including molecular oxygen (O2) and a gas including a carbon sulfur terminal ligand. A high RF frequency source is employed in certain embodiments to achieve a high etch rate with high selectivity to inorganic dielectric layers. In certain embodiments, the etchant gas mixture includes only the two components, COS and O2, but in other embodiments additional gases, such as at least one of molecular nitrogen (N2), carbon monoxide (CO) or carbon dioxide (CO2) may be further employed to etch to carbonaceous layers.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: March 13, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Judy Wang, Shawming Ma, Chang-Lin Hsieh, Bryan Liao, Jie Zhou, Hun Sang Kim
  • Publication number: 20100297850
    Abstract: A selective self-aligned dual patterning method. The method includes performing a single lithography operation to form a patterned mask having a narrow feature in a region of a substrate that is to a have pitch-reduced feature and a wide feature in a region of the substrate that is to have a non-pitch-reduced feature. Using the patterned mask, a template mask is formed with a first etch and the patterned mask is then removed from the narrow feature while being retained over the wide feature. The template mask is then thinned with a second etch to introduce a thickness delta in the template mask between the narrow and wide features. A spacer mask is then formed and the thinned narrow template mask is removed to leave a pitch double spacer mask while the thick wide template mask feature is retained to leave a non-pitch reduced mask.
    Type: Application
    Filed: July 17, 2009
    Publication date: November 25, 2010
    Inventors: Hun Sang Kim, Hyungje Woo, Shinichi Koseki, Eda Tuncel, Chung Liu
  • Publication number: 20090212010
    Abstract: Etching of carbonaceous layers with an etchant gas mixture including molecular oxygen (O2) and a gas including a carbon sulfur terminal ligand. A high RF frequency source is employed in certain embodiments to achieve a high etch rate with high selectivity to inorganic dielectric layers. In certain embodiments, the etchant gas mixture includes only the two components, COS and O2, but in other embodiments additional gases, such as at least one of molecular nitrogen (N2), carbon monoxide (CO) or carbon dioxide (CO2) may be further employed to etch to carbonaceous layers.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 27, 2009
    Inventors: Judy Wang, Shawming Ma, Chang-Lin Hsieh, Bryan Liao, Jie Zhou, Hun Sang Kim