Patents by Inventor Hung A. Vo

Hung A. Vo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210121582
    Abstract: Some embodiments disclosed herein pertain to indicator compounds used to detect the presence of and/or an amount of an analyte. In some embodiments, the indicator compounds are fusion proteins. In some embodiments, when the analyte binds to the indicator compound, the indicator compound undergoes a conformational change. In some embodiments, the conformational change results in a luminescent signal that allows quantification of the amount of analyte present.
    Type: Application
    Filed: October 23, 2020
    Publication date: April 29, 2021
    Inventors: Venkatramanan Krishnamani, Sergei Petrovich Balashov, Kevin Hughes Pauley, Ruiqi Long, Hung The Vo
  • Publication number: 20210113121
    Abstract: Systems, methods, and apparatuses for enabling a plurality of non-invasive, physiological sensors to obtain physiological measurements from essentially the same, overlapping, or proximate regions of tissue of a patient are disclosed. Each of a plurality of sensors can be integrated with or attached to a multi-sensor apparatus and can be oriented such that each sensor is directed towards, or can obtain a measurement from, the same or a similar location.
    Type: Application
    Filed: August 27, 2020
    Publication date: April 22, 2021
    Inventors: Mohamed K. Diab, Kevin Hughes Pauley, Jesse Chen, Cristiano Dalvi, Hung The Vo, Ferdyan Lesmana, Jeroen Poeze, Ruiqi Long, Venkatramanan Krishnamani, Frank Lee, Mathew Paul
  • Patent number: 10980432
    Abstract: A system for measuring blood pressure of a wearer of an inflatable cuff and a method thereof. The system includes a piston, a bar lever located to restrict at least some movement of the piston, a motor coupled to an actuator that is coupled to the bar lever, and a processor in communication with the motor. The processor is configured to receive pressure data associated with the inflatable cuff and is configured to, based on a determination that the pressure data satisfies a threshold, actuate the motor to move the bar lever in a first or second direction. Movement of the bar lever in the first direction causes the piston to move in the first direction, thereby increasing the flow rate of gas through a gas pathway. Movement of the bar lever in the second direction causes a decrease in the flow rate of the gas through the gas pathway.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: April 20, 2021
    Assignee: Masimo Corporation
    Inventors: Cristiano Dalvi, Marcelo M. Lamego, Massi Joe E. Kiani, Jeroen Poeze, Hung Vo
  • Publication number: 20210111513
    Abstract: A magnetic connector has a plug core disposed around a plug contact set and a receptacle core disposed around a receptacle contact set. The plug core defines a generally elongated circular plug core edge. The receptacle core defines a generally elongated concentric-circular receptacle core edge. The receptacle core edge defines an air gap and the plug core defines an anchor configured to insert into the air gap. A coil is disposed around the receptacle core, and the coil, the plug core and the air gap define a magnetic circuit. The coil is electrically energized so as to form a magnetic field within an air gap, lock the anchor within the air gap and lock the plug contact set to the receptacle contact set accordingly.
    Type: Application
    Filed: October 28, 2020
    Publication date: April 15, 2021
    Inventors: Massi Joe E. Kiani, Marcelo M. Lamego, Cristiano Dalvi, Hung The Vo
  • Patent number: 10973817
    Abstract: This invention relates to compounds that inhibit or modulate the activity of Chk-1 kinase. Also provided are pharmaceutical compositions containing the compounds and the therapeutic uses of the compounds.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: April 13, 2021
    Assignee: SENTINEL ONCOLOGY LIMITED
    Inventors: Robert George Boyle, David Winter Walker, Richard Justin Boyce, Scott Peterson, Francine Farouz, Cong Hung Vo
  • Publication number: 20210085228
    Abstract: An optical measurement device includes a light source, a first detector, and a second detector. The light source emits light to a measurement site of a patient and one or more detectors detect the light from the light source. At least a portion of a detector is translucent and the light passes through the translucent portion prior to reaching the measurement site. A detector receives the light after attenuation and/or reflection or refraction by the measurement site. A processor determines a light intensity of the light source, a light intensity through a tissue site, or a light intensity of reflected or refracted light based on light detected by the one or more detectors. The processor can estimate a concentration of an analyte at the measurement site or an absorption or reflection at the measurement site.
    Type: Application
    Filed: August 5, 2020
    Publication date: March 25, 2021
    Inventors: Kevin Pauley, Cristiano Dalvi, Hung Vo, Jesse Chen, Ferdyan Lesmana, Jeroen Poeze, Sean Merritt
  • Patent number: 10952614
    Abstract: A modulated physiological sensor is a noninvasive device responsive to a physiological reaction of a living being to an internal or external perturbation that propagates to a skin surface area. The modulated physiological sensor has a detector configured to generate a signal responsive to the physiological reaction. A modulator varies the coupling of the detector to the skin so as to at least intermittently maximize the detector signal. A monitor controls the modulator and receives an effectively amplified detector signal, which is processed to calculate a physiological parameter indicative of the physiological reaction.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: March 23, 2021
    Assignee: MASIMO CORPORATION
    Inventors: Marcelo Lamego, Cristiano Dalvi, Hung The Vo
  • Patent number: 10945648
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: March 16, 2021
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10912501
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: February 9, 2021
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10912500
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: February 9, 2021
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10912502
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: February 9, 2021
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20210007635
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 14, 2021
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20210007636
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 14, 2021
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Publication number: 20210000392
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 7, 2021
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10855023
    Abstract: A magnetic connector has a plug core disposed around a plug contact set and a receptacle core disposed around a receptacle contact set. The plug core defines a generally elongated circular plug core edge. The receptacle core defines a generally elongated concentric-circular receptacle core edge. The receptacle core edge defines an air gap and the plug core defines an anchor configured to insert into the air gap. A coil is disposed around the receptacle core, and the coil, the plug core and the air gap define a magnetic circuit. The coil is electrically energized so as to form a magnetic field within an air gap, lock the anchor within the air gap and lock the plug contact set to the receptacle contact set accordingly.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: December 1, 2020
    Assignee: Masimo Corporation
    Inventors: Massi Joe E. Kiani, Marcelo M. Lamego, Cristiano Dalvi, Hung Vo
  • Patent number: 10758166
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: September 1, 2020
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10750984
    Abstract: An optical measurement device includes a light source, a first detector, and a second detector. The light source emits light to a measurement site of a patient and one or more detectors detect the light from the light source. At least a portion of a detector is translucent and the light passes through the translucent portion prior to reaching the measurement site. A detector receives the light after attenuation and/or reflection or refraction by the measurement site. A processor determines a light intensity of the light source, a light intensity through a tissue site, or a light intensity of reflected or refracted light based on light detected by the one or more detectors. The processor can estimate a concentration of an analyte at the measurement site or an absorption or reflection at the measurement site.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: August 25, 2020
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Kevin Pauley, Cristiano Dalvi, Hung Vo, Jesse Chen, Ferdyan Lesmana, Jeroen Poeze, Sean Merritt
  • Patent number: 10743803
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: August 18, 2020
    Assignee: Masimo Corporation
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen
  • Patent number: 10729335
    Abstract: The present disclosure includes a handheld processing device including medical applications for minimally and noninvasive glucose measurements. In an embodiment, the device creates a patient specific calibration using a measurement protocol of minimally invasive measurements and noninvasive measurements, eventually creating a patient specific noninvasive glucometer. Additionally, embodiments of the present disclosure provide for the processing device to execute medical applications and non-medical applications.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: August 4, 2020
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Marcelo M. Lamego, Massi Joe E. Kiani, Jeroen Poeze, Cristiano Dalvi, Sean Merritt, Hung Vo, Gregory A. Olsen, Ferdyan Lesmana
  • Publication number: 20200229738
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: March 30, 2020
    Publication date: July 23, 2020
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani, Greg Olsen