Patents by Inventor Hung-Chuan MAI

Hung-Chuan MAI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10734551
    Abstract: The invention provides an LED including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, a Bragg reflector structure, a conductive layer and insulation patterns. The first electrode and the second electrode are located on the same side of the Bragg reflector structure. The conductive layer is disposed between the Bragg reflector structure and the second-type semiconductor layer. The insulation patterns are disposed between the conductive layer and the second-type semiconductor layer. Each insulating layer has a first surface facing toward the second-type semiconductor layer, a second surface facing away from the second-type semiconductor layer, and an inclined surface. The inclined surface connects the first surface and the second surface and is inclined with respect to the first surface and the second surface.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: August 4, 2020
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Publication number: 20200052159
    Abstract: The invention provides an LED including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, a Bragg reflector structure, a conductive layer and insulation patterns. The first electrode and the second electrode are located on the same side of the Bragg reflector structure. The conductive layer is disposed between the Bragg reflector structure and the second-type semiconductor layer. The insulation patterns are disposed between the conductive layer and the second-type semiconductor layer. Each insulating layer has a first surface facing toward the second-type semiconductor layer, a second surface facing away from the second-type semiconductor layer, and an inclined surface. The inclined surface connects the first surface and the second surface and is inclined with respect to the first surface and the second surface.
    Type: Application
    Filed: October 21, 2019
    Publication date: February 13, 2020
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Patent number: 10453999
    Abstract: The invention provides an LED including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, a Bragg reflector structure, a conductive layer and insulation patterns. The first electrode and the second electrode are located on the same side of the Bragg reflector structure. The conductive layer is disposed between the Bragg reflector structure and the second-type semiconductor layer. The insulation patterns are disposed between the conductive layer and the second-type semiconductor layer. Each insulating layer has a first surface facing toward the second-type semiconductor layer, a second surface facing away from the second-type semiconductor layer, and an inclined surface. The inclined surface connects the first surface and the second surface and is inclined with respect to the first surface and the second surface.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: October 22, 2019
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Publication number: 20180337310
    Abstract: A light emitting diode including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, and a Bragg reflector structure. The emitting layer is configured to emit a light beam and is located between the first-type semiconductor layer and the second-type semiconductor layer. The light beam has a peak wavelength in a light emitting wavelength range. The first-type semiconductor layer, the emitting layer, and the second-type semiconductor layer are located on a same side of the Bragg reflector structure. A reflectance of the Bragg reflector structure is greater than or equal to 95% in a reflective wavelength range at least covering 0.8X nm to 1.8X nm, and X is the peak wavelength of the light emitting wavelength range.
    Type: Application
    Filed: July 30, 2018
    Publication date: November 22, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting
  • Publication number: 20180261727
    Abstract: The invention provides an LED including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, a Bragg reflector structure, a conductive layer and insulation patterns. The first electrode and the second electrode are located on the same side of the Bragg reflector structure. The conductive layer is disposed between the Bragg reflector structure and the second-type semiconductor layer. The insulation patterns are disposed between the conductive layer and the second-type semiconductor layer. Each insulating layer has a first surface facing toward the second-type semiconductor layer, a second surface facing away from the second-type semiconductor layer, and an inclined surface. The inclined surface connects the first surface and the second surface and is inclined with respect to the first surface and the second surface.
    Type: Application
    Filed: May 16, 2018
    Publication date: September 13, 2018
    Applicant: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Patent number: 10038121
    Abstract: A light emitting diode including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, and a Bragg reflector structure. The emitting layer is configured to emit a light beam and is located between the first-type semiconductor layer and the second-type semiconductor layer. The light beam has a peak wavelength in a light emitting wavelength range. The first-type semiconductor layer, the emitting layer, and the second-type semiconductor layer are located on a same side of the Bragg reflector structure. A reflectance of the Bragg reflector structure is greater than or equal to 95% in a reflective wavelength range at least covering 0.8X nm to 1.8X nm, and X is the peak wavelength of the light emitting wavelength range.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: July 31, 2018
    Assignee: Genesis Photonics Inc.
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting
  • Publication number: 20170309787
    Abstract: A light emitting diode (LED) having distributed Bragg reflector (DBR) and a manufacturing method thereof are provided. The distributed Bragg reflector is used as a reflective element for reflecting the light generated by the light emitting layer to an ideal direction of light output. The distributed Bragg reflector has a plurality of through holes, such that the metal layer and the transparent conductive layer disposed on two sides of the distributed Bragg reflector may contact each other to conduct the current. Due to the distribution properties of the through holes, the current may be more uniformly diffused, and the light may be more uniformly emitted from the light emitting layer.
    Type: Application
    Filed: July 10, 2017
    Publication date: October 26, 2017
    Inventors: Yi-Ru Huang, Kuan-Chieh Huang, Chih-Ming Shen, Tung-Lin Chuang, Hung-Chuan Mai, Jing-En Huang, Shao-Ying Ting
  • Patent number: 9705045
    Abstract: A light emitting diode (LED) having distributed Bragg reflector (DBR) and a manufacturing method thereof are provided. The distributed Bragg reflector is used as a reflective element for reflecting the light generated by the light emitting layer to an ideal direction of light output. The distributed Bragg reflector has a plurality of through holes, such that the metal layer and the transparent conductive layer disposed on two sides of the distributed Bragg reflector may contact each other to conduct the current. Due to the distribution properties of the through holes, the current may be more uniformly diffused, and the light may be more uniformly emitted from the light emitting layer.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: July 11, 2017
    Assignee: GENESIS PHOTONICS INC.
    Inventors: Yi-Ru Huang, Kuan-Chieh Huang, Chih-Ming Shen, Tung-Lin Chuang, Hung-Chuan Mai, Jing-En Huang, Shao-Ying Ting
  • Publication number: 20160329461
    Abstract: The invention provides an LED including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, a Bragg reflector structure, a conductive layer and insulation patterns. The first electrode and the second electrode are located on the same side of the Bragg reflector structure. The conductive layer is disposed between the Bragg reflector structure and the second-type semiconductor layer. The insulation patterns are disposed between the conductive layer and the second-type semiconductor layer. Each insulating layer has a first surface facing toward the second-type semiconductor layer, a second surface facing away from the second-type semiconductor layer, and an inclined surface. The inclined surface connects the first surface and the second surface and is inclined with respect to the first surface and the second surface.
    Type: Application
    Filed: April 22, 2016
    Publication date: November 10, 2016
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting, Cheng-Pin Chen, Wei-Chen Chien, Chih-Chin Cheng, Chih-Hung Tseng
  • Publication number: 20160247974
    Abstract: A light emitting diode including a first-type semiconductor layer, an emitting layer, a second-type semiconductor layer, a first electrode, a second electrode, and a Bragg reflector structure. The emitting layer is configured to emit a light beam and is located between the first-type semiconductor layer and the second-type semiconductor layer. The light beam has a peak wavelength in a light emitting wavelength range. The first-type semiconductor layer, the emitting layer, and the second-type semiconductor layer are located on a same side of the Bragg reflector structure. A reflectance of the Bragg reflector structure is greater than or equal to 95% in a reflective wavelength range at least covering 0.8X nm to 1.8X nm, and X is the peak wavelength of the light emitting wavelength range.
    Type: Application
    Filed: February 17, 2016
    Publication date: August 25, 2016
    Inventors: Yi-Ru Huang, Tung-Lin Chuang, Yan-Ting Lan, Sheng-Tsung Hsu, Chih-Ming Shen, Jing-En Huang, Teng-Hsien Lai, Hung-Chuan Mai, Kuan-Chieh Huang, Shao-Ying Ting
  • Publication number: 20160240744
    Abstract: A light emitting diode (LED) having distributed Bragg reflector (DBR) and a manufacturing method thereof are provided. The distributed Bragg reflector is used as a reflective element for reflecting the light generated by the light emitting layer to an ideal direction of light output. The distributed Bragg reflector has a plurality of through holes, such that the metal layer and the transparent conductive layer disposed on two sides of the distributed Bragg reflector may contact each other to conduct the current. Due to the distribution properties of the through holes, the current may be more uniformly diffused, and the light may be more uniformly emitted from the light emitting layer.
    Type: Application
    Filed: February 17, 2016
    Publication date: August 18, 2016
    Inventors: Yi-Ru Huang, Kuan-Chieh Huang, Chih-Ming Shen, Tung-Lin Chuang, Hung-Chuan Mai, Jing-En Huang, Shao-Ying Ting
  • Publication number: 20080220197
    Abstract: A phase-change recording film with stable crystallization rate and a composite target for producing the film are composed of 10 to 50 atomic percent of phase-change material containing Te or Sb and 50 to 90 atomic percent of dielectric material. Another target for producing the film is composed of dielectric material and a phase-change material containing Te or Sb attached to the dielectric material. A co-sputtering process for producing the film uses a target made of dielectric material and a target made of phase-change material containing Te or Sb to co-sputter. Because the crystallization rate of the phase-change recording film does not change as the thickness of phase-change recording film varies, manufacturing the phase-change recording film does not require to be precisely controlled unduly.
    Type: Application
    Filed: March 3, 2008
    Publication date: September 11, 2008
    Applicant: SOLAR APPLIED MATERIAL TECHNOLOGY CORP.
    Inventors: Jonq-Ren LEE, Tsung-Eong HSIEH, Yuan-Chang LAI, Hung-Chuan MAI