Patents by Inventor Hung-Chun Wang

Hung-Chun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957061
    Abstract: A semiconductor device includes a substrate, a first dielectric layer, a second dielectric layer, and a third dielectric layer. The first dielectric layer is disposed on the substrate, around a first metal interconnection. The second dielectric layer is disposed on the first dielectric layer, around a via and a second metal interconnection. The second metal interconnection directly contacts the first metal interconnection. The third dielectric layer is disposed on the second dielectric layer, around a first magnetic tunneling junction (MTJ) structure and a third metal interconnection. The third metal interconnection directly contacts top surfaces of the first MTJ structure and the second metal interconnection, and the first MTJ structure directly contacts the via.
    Type: Grant
    Filed: May 23, 2023
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Po-Kai Hsu, Ju-Chun Fan, Yi-Yu Lin, Ching-Hua Hsu, Hung-Yueh Chen
  • Publication number: 20240113043
    Abstract: A semiconductor device and methods of fabrication thereof including a substrate, a doped well formed in the substrate, a transistor formed on the substrate, a dielectric material located over the doped well and the transistor and including interconnect structures extending through the dielectric material, the interconnect structures including a first set of interconnect structures electrically coupled to an active region of the transistor and a second set of interconnect structures electrically coupled to the doped well, an active memory cell electrically coupled to the active region of the transistor via the first set of interconnect structures; and a dummy memory cell electrically coupled to the doped well via the second set of conductive interconnect structures. The dummy memory cell and the second set of conductive interconnect structures may provide a low resistance pathway for plasma charge to flow to the doped well, thereby minimizing plasma induced damage to the transistor.
    Type: Application
    Filed: April 20, 2023
    Publication date: April 4, 2024
    Inventors: Harry-Hak-Lay Chuang, Hung Cho Wang, Wen-Chun You
  • Publication number: 20240093357
    Abstract: A semiconductor device is manufactured by modifying an electromagnetic field within a deposition chamber. In embodiments in which the deposition process is a sputtering process, the electromagnetic field may be modified by adjusting a distance between a first coil and a mounting platform. In other embodiments, the electromagnetic field may be adjusted by applying or removing power from additional coils that are also present.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Inventors: Jen-Chun Wang, Ya-Lien Lee, Chih-Chien Chi, Hung-Wen Su
  • Patent number: 11925035
    Abstract: A hybrid random access memory for a system-on-chip (SOC), including a semiconductor substrate with a MRAM region and a ReRAM region, a first dielectric layer on the semiconductor substrate, multiple ReRAM cells in the first dielectric layer on the ReRAM region, a second dielectric layer above the first dielectric layer, and multiple MRAM cells in the second dielectric layer on the MRAM region.
    Type: Grant
    Filed: October 26, 2022
    Date of Patent: March 5, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Kai Hsu, Hui-Lin Wang, Ching-Hua Hsu, Yi-Yu Lin, Ju-Chun Fan, Hung-Yueh Chen
  • Patent number: 11308256
    Abstract: Implementations of the disclosure provide a method of fabricating an integrated circuit (IC). The method includes receiving an IC design layout; performing optical proximity correction (OPC) process to the IC design layout to produce a corrected IC design layout; and verifying the corrected IC design layout using a machine learning algorithm. The post OPC verification includes using the machine learning algorithm to identify one or more features of the corrected IC design layout; comparing the one or more identified features to a database comprising a plurality of features; and verifying the corrected IC design layout based on labels in the database associated with the plurality of features.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: April 19, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Chun Wang, Cheng Kun Tsai, Wen-Chun Huang, Wei-Chen Chien, Chi-Ping Liu
  • Patent number: 11048161
    Abstract: Optical proximity correction (OPC) based computational lithography techniques are disclosed herein for enhancing lithography printability. An exemplary mask optimization method includes receiving an integrated circuit (IC) design layout having an IC pattern; generating target points for a contour corresponding with the IC pattern based on a target placement model, wherein the target placement model is selected based on a classification of the IC pattern; and performing an OPC on the IC pattern using the target points, thereby generating a modified IC design layout. The method can further include fabricating a mask based on the modified IC design layout. The OPC can select an OPC model based on the classification of the IC pattern. The OPC model can weight the target placement model.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: June 29, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Chun Wang, Chi-Ping Liu, Feng-Ju Chang, Ching-Hsu Chang, Wen Hao Liu, Chia-Feng Yeh, Ming-Hui Chih, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang, Yu-Po Tang
  • Patent number: 10860774
    Abstract: The present disclosure relates to a method of data preparation. The method, in some embodiments, performs a first data preparation process using a data preparation element. The first data preparation process modifies a plurality of shapes of an integrated chip (IC) design that comprises a graphical representation of a layout used to fabricate an integrated chip. A plurality of additional shapes are added to the IC design using an additional shape insertion element. The plurality of additional shapes are separated from the plurality of shapes by one or more non-zero distances. A second data preparation process is performed using the data preparation element, after performing the first data preparation process. The second data preparation process modifies the plurality of additional shapes.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Chun Wang, Ming-Hui Chih, Ping-Chieh Wu, Chun-Hung Wu, Wen-Hao Liu, Cheng-Hsuan Huang, Cheng-Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
  • Publication number: 20200320246
    Abstract: Implementations of the disclosure provide a method of fabricating an integrated circuit (IC). The method includes receiving an IC design layout; performing optical proximity correction (OPC) process to the IC design layout to produce a corrected IC design layout; and verifying the corrected IC design layout using a machine learning algorithm. The post OPC verification includes using the machine learning algorithm to identify one or more features of the corrected IC design layout; comparing the one or more identified features to a database comprising a plurality of features; and verifying the corrected IC design layout based on labels in the database associated with the plurality of features.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 8, 2020
    Inventors: Hung-Chun WANG, Cheng Kun TSAI, Wen-Chun HUANG, Wei-Chen CHIEN, Chi-Ping LIU
  • Patent number: 10747938
    Abstract: An integrated circuit (IC) manufacturing method includes receiving an IC design layout having IC regions separate from each other. Each of the IC regions includes an initial IC pattern that is substantially identical among the IC regions. The method further includes identifying a group of IC regions from the IC regions. All IC regions in the group have a substantially same location effect, which is introduced by global locations of the IC regions on the IC design layout. The method further includes performing a correction process to a first IC region in the group, modifying the initial IC pattern in the first IC region into a first corrected IC pattern. The correction process includes using a computer program to correct location effect. The method further includes replacing the initial IC pattern in a second IC region in the group with the first corrected IC pattern.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: August 18, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Chun Wang, Ching-Hsu Chang, Chun-Hung Wu, Cheng Kun Tsai, Feng-Ju Chang, Feng-Lung Lin, Ming-Hsuan Wu, Ping-Chieh Wu, Ru-Gun Liu, Wen-Chun Huang, Wen-Hao Liu
  • Patent number: 10691864
    Abstract: Implementations of the disclosure provide a method of fabricating an integrated circuit (IC). The method includes receiving an IC design layout; performing optical proximity correction (OPC) process to the IC design layout to produce a corrected IC design layout; and verifying the corrected IC design layout using a machine learning algorithm. The post OPC verification includes using the machine learning algorithm to identify one or more features of the corrected IC design layout; comparing the one or more identified features to a database comprising a plurality of features; and verifying the corrected IC design layout based on labels in the database associated with the plurality of features.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: June 23, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Chun Wang, Cheng Kun Tsai, Wen-Chun Huang, Wei-Chen Chien, Chi-Ping Liu
  • Publication number: 20200142294
    Abstract: Optical proximity correction (OPC) based computational lithography techniques are disclosed herein for enhancing lithography printability. An exemplary mask optimization method includes receiving an integrated circuit (IC) design layout having an IC pattern; generating target points for a contour corresponding with the IC pattern based on a target placement model, wherein the target placement model is selected based on a classification of the IC pattern; and performing an OPC on the IC pattern using the target points, thereby generating a modified IC design layout. The method can further include fabricating a mask based on the modified IC design layout. The OPC can select an OPC model based on the classification of the IC pattern. The OPC model can weight the target placement model.
    Type: Application
    Filed: December 27, 2019
    Publication date: May 7, 2020
    Inventors: Hung-Chun Wang, Chi-Ping Liu, Feng-Ju Chang, Ching-Hsu Chang, Wen Hao Liu, Chia-Feng Yeh, Ming-Hui Chih, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang, Yu-Po Tang
  • Patent number: 10527928
    Abstract: Optical proximity correction (OPC) based computational lithography techniques are disclosed herein for enhancing lithography printability. An exemplary mask optimization method includes receiving an integrated circuit (IC) design layout having an IC pattern; generating target points for a contour corresponding with the IC pattern based on a target placement model, wherein the target placement model is selected based on a classification of the IC pattern; and performing an OPC on the IC pattern using the target points, thereby generating a modified IC design layout. The method can further include fabricating a mask based on the modified IC design layout. The OPC can select an OPC model based on the classification of the IC pattern. The OPC model can weight the target placement model.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: January 7, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Chun Wang, Chi-Ping Liu, Feng-Ju Chang, Ching-Hsu Chang, Wen Hao Liu, Chia-Feng Yeh, Ming-Hui Chih, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang, Yu-Po Tang
  • Patent number: 10520829
    Abstract: Examples of optical proximity correction (OPC) based computational lithography techniques are disclosed herein. An exemplary method includes receiving an IC design layout that includes an IC feature, the IC feature specifying a mask feature for selectively exposing to radiation a portion of a photoresist disposed on a substrate; determining topographical information of an underlying layer disposed on the substrate between the photoresist and the substrate; performing an OPC process on the IC feature to generate a modified IC feature; and providing a modified IC design layout including the modified IC feature for fabricating a mask based on the modified IC design layout. The OPC process may use the topographical information of the underlying layer to compensate for an amount of radiation directed towards the portion of the photoresist so as to expose the portion of the photoresist to a target dosage of radiation.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: December 31, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Chun Wang, Chi-Ping Liu, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang
  • Publication number: 20190340330
    Abstract: An integrated circuit (IC) manufacturing method includes receiving an IC design layout having IC regions separate from each other. Each of the IC regions includes an initial IC pattern that is substantially identical among the IC regions. The method further includes identifying a group of IC regions from the IC regions. All IC regions in the group have a substantially same location effect, which is introduced by global locations of the IC regions on the IC design layout. The method further includes performing a correction process to a first IC region in the group, modifying the initial IC pattern in the first IC region into a first corrected IC pattern. The correction process includes using a computer program to correct location effect. The method further includes replacing the initial IC pattern in a second IC region in the group with the first corrected IC pattern.
    Type: Application
    Filed: July 19, 2019
    Publication date: November 7, 2019
    Inventors: Hung-Chun Wang, Ching-Hsu Chang, Chun-Hung Wu, Cheng Kun Tsai, Feng-Ju Chang, Feng-Lung Lin, Ming-Hsuan WU, Ping-Chieh Wu, Ru-Gun Liu, Wen-Chun Huang, Wen-Hao Liu
  • Patent number: 10360339
    Abstract: Provided is an integrated circuit (IC) manufacturing method. The method includes receiving an IC design layout, wherein the IC design layout includes multiple IC regions and each of the IC regions includes an initial IC pattern. The method further includes performing a correction process to a first IC region, thereby modifying the initial IC pattern in the first IC region to result in a first corrected IC pattern in the first IC region, wherein the correction process includes location effect correction. The method further includes replacing the initial IC pattern in a second IC region with the first corrected IC pattern.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: July 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Chun Wang, Ching-Hsu Chang, Chun-Hung Wu, Cheng Kun Tsai, Feng-Ju Chang, Feng-Lung Lin, Ming-Hsuan Wu, Ping-Chieh Wu, Ru-Gun Liu, Wen-Chun Huang, Wen-Hao Liu
  • Publication number: 20190147134
    Abstract: Implementations of the disclosure provide a method of fabricating an integrated circuit (IC). The method includes receiving an IC design layout; performing optical proximity correction (OPC) process to the IC design layout to produce a corrected IC design layout; and verifying the corrected IC design layout using a machine learning algorithm. The post OPC verification includes using the machine learning algorithm to identify one or more features of the corrected IC design layout; comparing the one or more identified features to a database comprising a plurality of features; and verifying the corrected IC design layout based on labels in the database associated with the plurality of features.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 16, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Chun Wang, Cheng Kun Tsai, Wen-Chun Huang, Wei-Chen Chien, Chi-Ping Liu
  • Publication number: 20190094710
    Abstract: Examples of optical proximity correction (OPC) based computational lithography techniques are disclosed herein. An exemplary method includes receiving an IC design layout that includes an IC feature, the IC feature specifying a mask feature for selectively exposing to radiation a portion of a photoresist disposed on a substrate; determining topographical information of an underlying layer disposed on the substrate between the photoresist and the substrate; performing an OPC process on the IC feature to generate a modified IC feature; and providing a modified IC design layout including the modified IC feature for fabricating a mask based on the modified IC design layout. The OPC process may use the topographical information of the underlying layer to compensate for an amount of radiation directed towards the portion of the photoresist so as to expose the portion of the photoresist to a target dosage of radiation.
    Type: Application
    Filed: September 26, 2017
    Publication date: March 28, 2019
    Inventors: Hung-Chun Wang, Chi-Ping Liu, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang
  • Publication number: 20180349545
    Abstract: The present disclosure relates to a method of data preparation. The method, in some embodiments, performs a first data preparation process using a data preparation element. The first data preparation process modifies a plurality of shapes of an integrated chip (IC) design that comprises a graphical representation of a layout used to fabricate an integrated chip. A plurality of additional shapes are added to the IC design using an additional shape insertion element. The plurality of additional shapes are separated from the plurality of shapes by one or more non-zero distances. A second data preparation process is performed using the data preparation element, after performing the first data preparation process. The second data preparation process modifies the plurality of additional shapes.
    Type: Application
    Filed: August 9, 2018
    Publication date: December 6, 2018
    Inventors: Hung-Chun Wang, Ming-Hui Chih, Ping-Chieh Wu, Chun-Hung Wu, Wen-Hao Liu, Cheng-Hsuan Huang, Cheng-Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
  • Patent number: 10049178
    Abstract: The present disclosure relates to a method of improving pattern density with a low OPC (optical proximity correction) cycle time, and an associated apparatus. In some embodiments, the method is performed by performing an initial data preparation process on an IC design including a graphical representation of a layout used to fabricate an integrated chip. The initial data preparation process is performed by using a data preparation element to generate a modified IC design having modified shapes that are modified forms of shapes within the IC design. One or more low-pattern-density areas of the modified IC design are identified using a local density checking element. One or more dummy shapes are added within the one or more low-pattern-density areas using a dummy shape insertion element. The one or more dummy shapes are separated from the modified shapes by a non-zero space.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: August 14, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Chun Wang, Ming-Hui Chih, Ping-Chieh Wu, Chun-Hung Wu, Wen-Hao Liu, Cheng-Hsuan Huang, Cheng-Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
  • Publication number: 20180173090
    Abstract: Optical proximity correction (OPC) based computational lithography techniques are disclosed herein for enhancing lithography printability. An exemplary mask optimization method includes receiving an integrated circuit (IC) design layout having an IC pattern; generating target points for a contour corresponding with the IC pattern based on a target placement model, wherein the target placement model is selected based on a classification of the IC pattern; and performing an OPC on the IC pattern using the target points, thereby generating a modified IC design layout. The method can further include fabricating a mask based on the modified IC design layout. The OPC can select an OPC model based on the classification of the IC pattern. The OPC model can weight the target placement model.
    Type: Application
    Filed: July 19, 2017
    Publication date: June 21, 2018
    Inventors: Hung-Chun Wang, Chi-Ping Liu, Feng-Ju Chang, Ching-Hsu Chang, Wen Hao Liu, Chia-Feng Yeh, Ming-Hui Chih, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang, Yu-Po Tang