Patents by Inventor Hung-Chun Wang
Hung-Chun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250151433Abstract: A pixel array that includes some pixels with high absorption (HA) structures and other pixels without HA structures exhibits increased dynamic range for near infrared (NIR) light. Additionally, the pixel array is a uniform array of photodiodes and thus does not exhibit current leakage that would have been caused by irregular isolation structures. Additionally, the pixel array may further a lateral overflow integration capacitor to further increase the dynamic range for NIR light.Type: ApplicationFiled: November 3, 2023Publication date: May 8, 2025Inventors: Cheng-Ying HO, Kai-Chun HSU, Wen-De WANG, Yuh HUANG, Cheng-Yu HSIEH, Hung-Yu WANG, Jen-Cheng LIU
-
Patent number: 12279437Abstract: An MRAM memory cell includes a substrate and a transistor. The transistor includes: first and second source regions; a drain region between the first and second source regions; a first channel region between the drain region and the first source region; a second channel region between the drain region and the second source region; a first gate structure over the first channel region; and a second gate structure over the second channel region. A magnetic tunnel junction is overlying the transistor. The drain region is coupled to the magnetic tunnel junction. A first metal layer is overlying the transistor, and a second metal layer is overlying the first metal layer. The second and first metal layers couple a common source line signal to the first and second source regions of the MRAM memory cell and to those of a neighboring MRAM memory cell.Type: GrantFiled: July 31, 2023Date of Patent: April 15, 2025Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Harry-Hak-Lay Chuang, Wen-Chun You, Hung Cho Wang, Yen-Yu Shih
-
Patent number: 12274180Abstract: A method for fabricating a semiconductor device includes the steps of forming a magnetic tunneling junction (MTJ) on a MRAM region of a substrate, forming a first inter-metal dielectric (IMD) layer around the MTJ, forming a patterned mask on a logic region of the substrate, performing a nitridation process to transform part of the first IMD layer to a nitride layer, forming a first metal interconnection on the logic region, forming a stop layer on the first IMD layer, forming a second IMD layer on the stop layer, and forming a second metal intercom in the second IMD layer to connect to the MTJ.Type: GrantFiled: March 17, 2023Date of Patent: April 8, 2025Assignee: UNITED MICROELECTRONICS CORP.Inventors: Hui-Lin Wang, Chen-Yi Weng, Si-Han Tsai, Che-Wei Chang, Po-Kai Hsu, Jing-Yin Jhang, Yu-Ping Wang, Ju-Chun Fan, Ching-Hua Hsu, Yi-Yu Lin, Hung-Yueh Chen
-
Patent number: 12262646Abstract: A method for fabricating a semiconductor device includes the steps of first forming a first inter-metal dielectric (IMD) layer on a substrate and a metal interconnection in the first IMD layer, forming a magnetic tunneling junction (MTJ) and a top electrode on the metal interconnection, forming a spacer adjacent to the MTJ and the top electrode, forming a second IMD layer around the spacer, forming a cap layer on the top electrode, the spacer, and the second IMD layer, and then patterning the cap layer to form a protective cap on the top electrode and the spacer.Type: GrantFiled: December 25, 2023Date of Patent: March 25, 2025Assignee: UNITED MICROELECTRONICS CORP.Inventors: Hui-Lin Wang, Po-Kai Hsu, Ju-Chun Fan, Ching-Hua Hsu, Yi-Yu Lin, Hung-Yueh Chen
-
Publication number: 20240363779Abstract: The present invention provides a photovoltaic panel packaging structure and method for the same. The packaging structure comprises a frame and a solar photovoltaic panel. The solar photovoltaic panel includes a first frame surface and a second frame surface with a receiving space and grooves formed therein. The a solar photovoltaic panel is installed in the receiving space and stacked on top of a first stop portion. The solar photovoltaic panel includes a first encapsulating layer, a second encapsulating layer. The first encapsulating layer includes a plurality of engaging strips extending along the edges of the solar photovoltaic panel, the engaging strips are respectively embedded in the corresponding grooves to hold the solar photovoltaic panel in place in the frame. Meanwhile, a third encapsulating layer extends to connect to the second frame surface. As a result, weight and thickness can be reduced while reducing multiple packaging passes and simplifying the assembly process.Type: ApplicationFiled: July 17, 2023Publication date: October 31, 2024Inventors: Yao-Chung Hsiao, Hui-Yun Wu, Hung-Chun Wang, Yu-Sheng Kuo
-
Patent number: 11308256Abstract: Implementations of the disclosure provide a method of fabricating an integrated circuit (IC). The method includes receiving an IC design layout; performing optical proximity correction (OPC) process to the IC design layout to produce a corrected IC design layout; and verifying the corrected IC design layout using a machine learning algorithm. The post OPC verification includes using the machine learning algorithm to identify one or more features of the corrected IC design layout; comparing the one or more identified features to a database comprising a plurality of features; and verifying the corrected IC design layout based on labels in the database associated with the plurality of features.Type: GrantFiled: June 22, 2020Date of Patent: April 19, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hung-Chun Wang, Cheng Kun Tsai, Wen-Chun Huang, Wei-Chen Chien, Chi-Ping Liu
-
Patent number: 11048161Abstract: Optical proximity correction (OPC) based computational lithography techniques are disclosed herein for enhancing lithography printability. An exemplary mask optimization method includes receiving an integrated circuit (IC) design layout having an IC pattern; generating target points for a contour corresponding with the IC pattern based on a target placement model, wherein the target placement model is selected based on a classification of the IC pattern; and performing an OPC on the IC pattern using the target points, thereby generating a modified IC design layout. The method can further include fabricating a mask based on the modified IC design layout. The OPC can select an OPC model based on the classification of the IC pattern. The OPC model can weight the target placement model.Type: GrantFiled: December 27, 2019Date of Patent: June 29, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hung-Chun Wang, Chi-Ping Liu, Feng-Ju Chang, Ching-Hsu Chang, Wen Hao Liu, Chia-Feng Yeh, Ming-Hui Chih, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang, Yu-Po Tang
-
Patent number: 10860774Abstract: The present disclosure relates to a method of data preparation. The method, in some embodiments, performs a first data preparation process using a data preparation element. The first data preparation process modifies a plurality of shapes of an integrated chip (IC) design that comprises a graphical representation of a layout used to fabricate an integrated chip. A plurality of additional shapes are added to the IC design using an additional shape insertion element. The plurality of additional shapes are separated from the plurality of shapes by one or more non-zero distances. A second data preparation process is performed using the data preparation element, after performing the first data preparation process. The second data preparation process modifies the plurality of additional shapes.Type: GrantFiled: August 9, 2018Date of Patent: December 8, 2020Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Hung-Chun Wang, Ming-Hui Chih, Ping-Chieh Wu, Chun-Hung Wu, Wen-Hao Liu, Cheng-Hsuan Huang, Cheng-Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
-
Publication number: 20200320246Abstract: Implementations of the disclosure provide a method of fabricating an integrated circuit (IC). The method includes receiving an IC design layout; performing optical proximity correction (OPC) process to the IC design layout to produce a corrected IC design layout; and verifying the corrected IC design layout using a machine learning algorithm. The post OPC verification includes using the machine learning algorithm to identify one or more features of the corrected IC design layout; comparing the one or more identified features to a database comprising a plurality of features; and verifying the corrected IC design layout based on labels in the database associated with the plurality of features.Type: ApplicationFiled: June 22, 2020Publication date: October 8, 2020Inventors: Hung-Chun WANG, Cheng Kun TSAI, Wen-Chun HUANG, Wei-Chen CHIEN, Chi-Ping LIU
-
Patent number: 10747938Abstract: An integrated circuit (IC) manufacturing method includes receiving an IC design layout having IC regions separate from each other. Each of the IC regions includes an initial IC pattern that is substantially identical among the IC regions. The method further includes identifying a group of IC regions from the IC regions. All IC regions in the group have a substantially same location effect, which is introduced by global locations of the IC regions on the IC design layout. The method further includes performing a correction process to a first IC region in the group, modifying the initial IC pattern in the first IC region into a first corrected IC pattern. The correction process includes using a computer program to correct location effect. The method further includes replacing the initial IC pattern in a second IC region in the group with the first corrected IC pattern.Type: GrantFiled: July 19, 2019Date of Patent: August 18, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Hung-Chun Wang, Ching-Hsu Chang, Chun-Hung Wu, Cheng Kun Tsai, Feng-Ju Chang, Feng-Lung Lin, Ming-Hsuan Wu, Ping-Chieh Wu, Ru-Gun Liu, Wen-Chun Huang, Wen-Hao Liu
-
Patent number: 10691864Abstract: Implementations of the disclosure provide a method of fabricating an integrated circuit (IC). The method includes receiving an IC design layout; performing optical proximity correction (OPC) process to the IC design layout to produce a corrected IC design layout; and verifying the corrected IC design layout using a machine learning algorithm. The post OPC verification includes using the machine learning algorithm to identify one or more features of the corrected IC design layout; comparing the one or more identified features to a database comprising a plurality of features; and verifying the corrected IC design layout based on labels in the database associated with the plurality of features.Type: GrantFiled: November 14, 2017Date of Patent: June 23, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hung-Chun Wang, Cheng Kun Tsai, Wen-Chun Huang, Wei-Chen Chien, Chi-Ping Liu
-
Publication number: 20200142294Abstract: Optical proximity correction (OPC) based computational lithography techniques are disclosed herein for enhancing lithography printability. An exemplary mask optimization method includes receiving an integrated circuit (IC) design layout having an IC pattern; generating target points for a contour corresponding with the IC pattern based on a target placement model, wherein the target placement model is selected based on a classification of the IC pattern; and performing an OPC on the IC pattern using the target points, thereby generating a modified IC design layout. The method can further include fabricating a mask based on the modified IC design layout. The OPC can select an OPC model based on the classification of the IC pattern. The OPC model can weight the target placement model.Type: ApplicationFiled: December 27, 2019Publication date: May 7, 2020Inventors: Hung-Chun Wang, Chi-Ping Liu, Feng-Ju Chang, Ching-Hsu Chang, Wen Hao Liu, Chia-Feng Yeh, Ming-Hui Chih, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang, Yu-Po Tang
-
Patent number: 10527928Abstract: Optical proximity correction (OPC) based computational lithography techniques are disclosed herein for enhancing lithography printability. An exemplary mask optimization method includes receiving an integrated circuit (IC) design layout having an IC pattern; generating target points for a contour corresponding with the IC pattern based on a target placement model, wherein the target placement model is selected based on a classification of the IC pattern; and performing an OPC on the IC pattern using the target points, thereby generating a modified IC design layout. The method can further include fabricating a mask based on the modified IC design layout. The OPC can select an OPC model based on the classification of the IC pattern. The OPC model can weight the target placement model.Type: GrantFiled: July 19, 2017Date of Patent: January 7, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hung-Chun Wang, Chi-Ping Liu, Feng-Ju Chang, Ching-Hsu Chang, Wen Hao Liu, Chia-Feng Yeh, Ming-Hui Chih, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang, Yu-Po Tang
-
Patent number: 10520829Abstract: Examples of optical proximity correction (OPC) based computational lithography techniques are disclosed herein. An exemplary method includes receiving an IC design layout that includes an IC feature, the IC feature specifying a mask feature for selectively exposing to radiation a portion of a photoresist disposed on a substrate; determining topographical information of an underlying layer disposed on the substrate between the photoresist and the substrate; performing an OPC process on the IC feature to generate a modified IC feature; and providing a modified IC design layout including the modified IC feature for fabricating a mask based on the modified IC design layout. The OPC process may use the topographical information of the underlying layer to compensate for an amount of radiation directed towards the portion of the photoresist so as to expose the portion of the photoresist to a target dosage of radiation.Type: GrantFiled: September 26, 2017Date of Patent: December 31, 2019Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hung-Chun Wang, Chi-Ping Liu, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang
-
Publication number: 20190340330Abstract: An integrated circuit (IC) manufacturing method includes receiving an IC design layout having IC regions separate from each other. Each of the IC regions includes an initial IC pattern that is substantially identical among the IC regions. The method further includes identifying a group of IC regions from the IC regions. All IC regions in the group have a substantially same location effect, which is introduced by global locations of the IC regions on the IC design layout. The method further includes performing a correction process to a first IC region in the group, modifying the initial IC pattern in the first IC region into a first corrected IC pattern. The correction process includes using a computer program to correct location effect. The method further includes replacing the initial IC pattern in a second IC region in the group with the first corrected IC pattern.Type: ApplicationFiled: July 19, 2019Publication date: November 7, 2019Inventors: Hung-Chun Wang, Ching-Hsu Chang, Chun-Hung Wu, Cheng Kun Tsai, Feng-Ju Chang, Feng-Lung Lin, Ming-Hsuan WU, Ping-Chieh Wu, Ru-Gun Liu, Wen-Chun Huang, Wen-Hao Liu
-
Patent number: 10360339Abstract: Provided is an integrated circuit (IC) manufacturing method. The method includes receiving an IC design layout, wherein the IC design layout includes multiple IC regions and each of the IC regions includes an initial IC pattern. The method further includes performing a correction process to a first IC region, thereby modifying the initial IC pattern in the first IC region to result in a first corrected IC pattern in the first IC region, wherein the correction process includes location effect correction. The method further includes replacing the initial IC pattern in a second IC region with the first corrected IC pattern.Type: GrantFiled: February 15, 2016Date of Patent: July 23, 2019Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Hung-Chun Wang, Ching-Hsu Chang, Chun-Hung Wu, Cheng Kun Tsai, Feng-Ju Chang, Feng-Lung Lin, Ming-Hsuan Wu, Ping-Chieh Wu, Ru-Gun Liu, Wen-Chun Huang, Wen-Hao Liu
-
Publication number: 20190147134Abstract: Implementations of the disclosure provide a method of fabricating an integrated circuit (IC). The method includes receiving an IC design layout; performing optical proximity correction (OPC) process to the IC design layout to produce a corrected IC design layout; and verifying the corrected IC design layout using a machine learning algorithm. The post OPC verification includes using the machine learning algorithm to identify one or more features of the corrected IC design layout; comparing the one or more identified features to a database comprising a plurality of features; and verifying the corrected IC design layout based on labels in the database associated with the plurality of features.Type: ApplicationFiled: November 14, 2017Publication date: May 16, 2019Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Hung-Chun Wang, Cheng Kun Tsai, Wen-Chun Huang, Wei-Chen Chien, Chi-Ping Liu
-
Publication number: 20190094710Abstract: Examples of optical proximity correction (OPC) based computational lithography techniques are disclosed herein. An exemplary method includes receiving an IC design layout that includes an IC feature, the IC feature specifying a mask feature for selectively exposing to radiation a portion of a photoresist disposed on a substrate; determining topographical information of an underlying layer disposed on the substrate between the photoresist and the substrate; performing an OPC process on the IC feature to generate a modified IC feature; and providing a modified IC design layout including the modified IC feature for fabricating a mask based on the modified IC design layout. The OPC process may use the topographical information of the underlying layer to compensate for an amount of radiation directed towards the portion of the photoresist so as to expose the portion of the photoresist to a target dosage of radiation.Type: ApplicationFiled: September 26, 2017Publication date: March 28, 2019Inventors: Hung-Chun Wang, Chi-Ping Liu, Cheng Kun Tsai, Wei-Chen Chien, Wen-Chun Huang
-
Publication number: 20180349545Abstract: The present disclosure relates to a method of data preparation. The method, in some embodiments, performs a first data preparation process using a data preparation element. The first data preparation process modifies a plurality of shapes of an integrated chip (IC) design that comprises a graphical representation of a layout used to fabricate an integrated chip. A plurality of additional shapes are added to the IC design using an additional shape insertion element. The plurality of additional shapes are separated from the plurality of shapes by one or more non-zero distances. A second data preparation process is performed using the data preparation element, after performing the first data preparation process. The second data preparation process modifies the plurality of additional shapes.Type: ApplicationFiled: August 9, 2018Publication date: December 6, 2018Inventors: Hung-Chun Wang, Ming-Hui Chih, Ping-Chieh Wu, Chun-Hung Wu, Wen-Hao Liu, Cheng-Hsuan Huang, Cheng-Kun Tsai, Wen-Chun Huang, Ru-Gun Liu
-
Patent number: 10049178Abstract: The present disclosure relates to a method of improving pattern density with a low OPC (optical proximity correction) cycle time, and an associated apparatus. In some embodiments, the method is performed by performing an initial data preparation process on an IC design including a graphical representation of a layout used to fabricate an integrated chip. The initial data preparation process is performed by using a data preparation element to generate a modified IC design having modified shapes that are modified forms of shapes within the IC design. One or more low-pattern-density areas of the modified IC design are identified using a local density checking element. One or more dummy shapes are added within the one or more low-pattern-density areas using a dummy shape insertion element. The one or more dummy shapes are separated from the modified shapes by a non-zero space.Type: GrantFiled: June 1, 2016Date of Patent: August 14, 2018Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Hung-Chun Wang, Ming-Hui Chih, Ping-Chieh Wu, Chun-Hung Wu, Wen-Hao Liu, Cheng-Hsuan Huang, Cheng-Kun Tsai, Wen-Chun Huang, Ru-Gun Liu