Patents by Inventor Hung-Ju Chou

Hung-Ju Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11979854
    Abstract: A method for monitoring paging is provided. The method is performed by a user equipment (UE) and includes actions of receiving a first Physical Downlink Control Channel (PDCCH) addressed to a first Radio Network Temporary Identifier (RNTI), and stopping monitoring a second PDCCH addressed to a second RNTI if the first PDCCH includes a paging stop indicator, where the second RNTI is the same as the first RNTI.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: May 7, 2024
    Assignee: FG Innovation Company Limited
    Inventors: Mei-Ju Shih, Hung-Chen Chen, Yung-Lan Tseng, Chie-Ming Chou
  • Patent number: 11937327
    Abstract: A user equipment (UE) and a method performed by the UE are provided. The method includes transitioning from a radio resource control (RRC) inactive (RRC_INACTIVE) state to an RRC idle (RRC_IDLE) state upon determining that the UE has failed to find a suitable cell and camped on an acceptable cell; and discarding a radio access network (RAN) notification area (RNA) configuration that comprises at least one of a list of tracking area identities (IDs) or a list of RAN area IDs in response to the transitioning from the RRC_INACTIVE state to the RRC_IDLE state. The acceptable cell fulfills a minimum set of requirements to initiate an emergency call and to receive one or more Earthquake & Tsunami Warning System (ETWS) and Commercial Mobile Alert System (CMAS) notifications. The suitable cell provides normal services. The acceptable cell provides limited services.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: March 19, 2024
    Assignee: FG Innovation Company Limited
    Inventors: Mei-Ju Shih, Yung-Lan Tseng, Hung-Chen Chen, Chie-Ming Chou
  • Publication number: 20240087961
    Abstract: The embodiments described herein are directed to a method for reducing fin oxidation during the formation of fin isolation regions. The method includes providing a semiconductor substrate with an n-doped region and a p-doped region formed on a top portion of the semiconductor substrate; epitaxially growing a first layer on the p-doped region; epitaxially growing a second layer different from the first layer on the n-doped region; epitaxially growing a third layer on top surfaces of the first and second layers, where the third layer is thinner than the first and second layers. The method further includes etching the first, second, and third layers to form fin structures on the semiconductor substrate and forming an isolation region between the fin structures.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hung-Ju CHOU, Chih-Chung Chang, Jun-Ming Kuo, Che-Yuan Hsu, Pei-Ling Kao, Chen-Hsuan Liao
  • Publication number: 20240090019
    Abstract: A method for LBT failure detection performed by a UE is provided. The method includes: receiving, by a MAC entity of the UE, an LBT failure indication from a lower layer for all UL transmissions; increasing an LBT failure counter when the MAC entity receives the LBT failure indication; determining an LBT failure event occurs when the LBT failure counter is greater than or equal to a threshold; and resetting the LBT failure counter after the MAC entity has not received the LBT failure indication for a time period.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 14, 2024
    Inventors: Hung-Chen Chen, Chie-Ming Chou, Chia-Hung Wei, Mei-Ju Shih
  • Patent number: 11923250
    Abstract: The embodiments described herein are directed to a method for reducing fin oxidation during the formation of fin isolation regions. The method includes providing a semiconductor substrate with an n-doped region and a p-doped region formed on a top portion of the semiconductor substrate; epitaxially growing a first layer on the p-doped region; epitaxially growing a second layer different from the first layer on the n-doped region; epitaxially growing a third layer on top surfaces of the first and second layers, where the third layer is thinner than the first and second layers. The method further includes etching the first, second, and third layers to form fin structures on the semiconductor substrate and forming an isolation region between the fin structures.
    Type: Grant
    Filed: July 28, 2022
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Ju Chou, Chih-Chung Chang, Jiun-Ming Kuo, Che-Yuan Hsu, Pei-Ling Gao, Chen-Hsuan Liao
  • Patent number: 11917445
    Abstract: A method performed by a BS for CHO is provided. The method includes transmitting a CHO command to a UE, the CHO command including a CHO command ID and a measurement ID associated with the CHO command ID; causing the UE to execute the CHO command to handover to a target BS when a trigger condition associated with the measurement ID is fulfilled; causing the UE to forgo transmitting the measurement report during the execution of the CHO command despite the UE being configured, via a report configuration associated with the measurement ID, to transmit the measurement report; transmitting, to the UE, a message that causes the UE to remove the CHO command; and after transmitting the message to the UE, determining that the report configuration is removed by the UE without transmitting, to the UE, an instruction to remove the report configuration.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: February 27, 2024
    Assignee: FG Innovation Company Limited
    Inventors: Hung-Chen Chen, Yung-Lan Tseng, Mei-Ju Shih, Chie-Ming Chou
  • Publication number: 20240021612
    Abstract: Semiconductor devices and methods of forming the same are provided. In an embodiment, a semiconductor device includes a first fin extending along a first direction, a second fin extending parallel to the first fin, and a gate structure over and wrapping around the first fin and the second fin, the gate structure extending along a second direction perpendicular to the first direction. The first fin bents away from the second fin along the second direction and the second fin bents away from the first fin along the second direction.
    Type: Application
    Filed: July 28, 2023
    Publication date: January 18, 2024
    Inventors: Jiun-Ming Kuo, Pei-Ling Gao, Chen-Hsuan Liao, Hung-Ju Chou, Chih-Chung Chang, Che-Yuan Hsu
  • Patent number: 11854819
    Abstract: The present disclosure provides methods of forming semiconductor devices. A method according to the present disclosure includes receiving a workpiece that includes a stack of semiconductor layers, depositing a first pad oxide layer on a germanium-containing top layer of the stack, depositing a second pad oxide layer on the first pad oxide layer, depositing a pad nitride layer on the second pad oxide layer, and patterning the stack using the first pad oxide layer, the second pad oxide layer, and the pad nitride layer as a hard mask layer. The depositing of the first pad oxide layer includes a first oxygen plasma power and the depositing of the second pad oxide layer includes a second oxygen plasma power greater than the first oxygen plasma power.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Hao Fu, Hung-Ju Chou, Che-Lun Chang, Jiun-Ming Kuo, Yuan-Ching Peng, Sung-En Lin, Nung-Che Cheng, Chunyao Wang
  • Publication number: 20230387213
    Abstract: A semiconductor structure includes a SiGe fin protruding from a substrate, where the SiGe fin includes a top portion having a first sidewall and a second sidewall and a bottom portion having a third sidewall and a fourth sidewall, and where a first transition region connecting the first sidewall to the third sidewall and a second transition region connecting the second sidewall to the fourth sidewall each have a tapered profile extending away from the first sidewall and the second sidewall, respectively, and a Si-containing layer disposed on the top portion of the SiGe fin, where a portion of the Si-containing layer on the first transition region extends away from the first sidewall by a first lateral distance and a portion of the Si-containing layer on the second transition region extends away from the second sidewall by a second lateral distance that is different from the first lateral distance.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Inventors: Yu-Shan Lu, Hung-Ju Chou, Pei-Ling Gao, Chen-Hsuan Liao, Chih-Chung Chang, Jiun-Ming Kuo, Che-Yuan Hsu
  • Publication number: 20230380130
    Abstract: A memory structure includes a first pull-up (PU) transistor and a first pull-down (PD) transistor sharing a first gate structure extending in a first direction, and a second PU transistor and a second PD transistor sharing a second gate structure extending in the first direction. The first gate structure has a first PU portion that corresponds with the first PU transistor and a first PD portion that corresponds with the first PD transistor. The second gate structure has a second PU portion that corresponds with the second PU transistor and a second PD portion that corresponds with the second PD transistor. The first and second PU portion each has a first dimension in a second direction perpendicular to the first direction, and the first and second PD portion each has a second dimension in the second direction. The first dimension is greater than the second dimension.
    Type: Application
    Filed: May 18, 2022
    Publication date: November 23, 2023
    Inventors: Hung-Ju CHOU, Yuan-Ching PENG
  • Patent number: 11791336
    Abstract: Semiconductor devices and methods of forming the same are provided. In an embodiment, a semiconductor device includes a first fin extending along a first direction, a second fin extending parallel to the first fin, and a gate structure over and wrapping around the first fin and the second fin, the gate structure extending along a second direction perpendicular to the first direction. The first fin bents away from the second fin along the second direction and the second fin bents away from the first fin along the second direction.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: October 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jiun-Ming Kuo, Pei-Ling Gao, Chen-Hsuan Liao, Hung-Ju Chou, Chih-Chung Chang, Che-Yuan Hsu
  • Patent number: 11757018
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming an n-type doped region in a semiconductor substrate and forming a semiconductor stack over the semiconductor substrate. The semiconductor stack has multiple sacrificial layers and multiple semiconductor layers laid out alternately. The method also includes introducing n-type dopants from the n-type doped region into the semiconductor stack during the forming of the semiconductor stack. The method further includes patterning the semiconductor stack to form a fin structure and forming a dummy gate stack to wrap around a portion of the fin structure. In addition, the method includes removing the dummy gate stack and the sacrificial layers to release multiple semiconductor nanostructures made up of remaining portions of the semiconductor layers. The method includes forming a metal gate stack to wrap around the semiconductor nanostructures.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: September 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Te-An Yu, Hung-Ju Chou, Jet-Rung Chang, Yen-Po Lin, Jiun-Ming Kuo
  • Patent number: 11735430
    Abstract: A method includes forming a semiconductor capping layer over a first fin in a first region of a substrate, forming a dielectric layer over the semiconductor capping layer, and forming an insulation material over the dielectric layer, an upper surface of the insulation material extending further away from the substrate than an upper surface of the first fin. The method further incudes recessing the insulation material to expose a top portion of the first fin, and forming a gate structure over the top portion of the first fin.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: August 22, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yin Wang, Hung-Ju Chou, Jiun-Ming Kuo, Wei-Ken Lin, Chun Te Li
  • Patent number: 11705372
    Abstract: The embodiments described herein are directed to a method for reducing fin oxidation during the formation of fin isolation regions. The method includes providing a semiconductor substrate with an n-doped region and a p-doped region formed on a top portion of the semiconductor substrate; epitaxially growing a first layer on the p-doped region; epitaxially growing a second layer different from the first layer on the n-doped region; epitaxially growing a third layer on top surfaces of the first and second layers, where the third layer is thinner than the first and second layers. The method further includes etching the first, second, and third layers to form fin structures on the semiconductor substrate and forming an isolation region between the fin structures.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: July 18, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung-Ju Chou, Chih-Chung Chang, Jiun-Ming Kuo, Che-Yuan Hsu, Pei-Ling Gao, Chen-Hsuan Liao
  • Publication number: 20230197820
    Abstract: The present disclosure provide a method that includes receiving a substrate having a semiconductor surface of a first semiconductor material; forming an APT feature in the substrate; performing a prebaking process to the substrate with a first temperature T1; epitaxially growing an undoped semiconductor layer of the first semiconductor layer and a first thickness t1 on the substrate at a second temperature T2; epitaxially growing a semiconductor layer stack over the undoped semiconductor layer at a third temperature T3 less than T2, wherein the semiconductor layer stack includes first semiconductor layers and second semiconductor layers stacked vertically in an alternating configuration; patterning the semiconductor substrate, and the semiconductor layer stack to form a trench, thereby defining an active region being adjacent the trench; forming an isolation feature in the trench; selectively removing the second semiconductor layers; and forming a gate structure wrapping around each of the first semiconductor
    Type: Application
    Filed: June 7, 2022
    Publication date: June 22, 2023
    Inventors: Min Jiao, Ji-Yin Tsai, Da-Wen Lin, Hung-Ju Chou
  • Publication number: 20230154243
    Abstract: The invention provides a method for notifying of an abnormal event and a self-propelled device and a notification system for implementing the same. The method for notifying of an abnormal event includes: providing a self-propelled device having a sensor and an internal computer; providing a terminal device having a display; controlling the self-propelled device to use the sensor and the internal computer to establish map information in a workspace; outputting a notification message by the internal computer when an abnormal event happens to the self-propelled device; and displaying the notification information by the display, in which the notification information includes the map information and a marking pattern in the map information, and the marking pattern indicates a corresponding position of the self-propelled device in the workspace, and thereby reducing the time cost to find the self-propelled device for the operator.
    Type: Application
    Filed: October 13, 2022
    Publication date: May 18, 2023
    Inventor: Hung-Ju CHOU
  • Publication number: 20230010541
    Abstract: A method includes forming a p-well and an n-well in a substrate. The method further includes forming a stack of interleaving first semiconductor layers and second semiconductor layers over the p-well and the n-well, the first semiconductor layers having a first thickness and the second semiconductor layers having a second thickness different than the first thickness. The method further includes annealing the stack of interleaving semiconductor layers. The method further includes patterning the stack to form fin-shaped structures including a first fin-shaped structure over the n-well and a second fin-shaped structure over the p-well. The method further includes etching to remove the second semiconductor layers from the first and second fin-shaped structures, where the first semiconductor layers have a different thickness within each of the first and second fin-shaped structures after the etching. The method further includes forming a metal gate over the first and second fin-shaped structures.
    Type: Application
    Filed: May 6, 2022
    Publication date: January 12, 2023
    Inventors: Hung-Ju CHOU, Yen-Po LIN, Jiun-Ming KUO, Yuan-Ching PENG
  • Publication number: 20230008005
    Abstract: The embodiments described herein are directed to a method for reducing fin oxidation during the formation of fin isolation regions. The method includes providing a semiconductor substrate with an n-doped region and a p-doped region formed on a top portion of the semiconductor substrate; epitaxially growing a first layer on the p-doped region; epitaxially growing a second layer different from the first layer on the n-doped region; epitaxially growing a third layer on top surfaces of the first and second layers, where the third layer is thinner than the first and second layers. The method further includes etching the first, second, and third layers to form fin structures on the semiconductor substrate and forming an isolation region between the fin structures.
    Type: Application
    Filed: July 28, 2022
    Publication date: January 12, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Ju Chou, Chih-Chung Chang, Jiun-Ming Kuo, Che-Yuan Hsu, Pei-Ling Gao, Chen-Hsuan Liao
  • Publication number: 20220384605
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming an n-type doped region in a semiconductor substrate and forming a semiconductor stack over the semiconductor substrate. The semiconductor stack has multiple sacrificial layers and multiple semiconductor layers laid out alternately. The method also includes introducing n-type dopants from the n-type doped region into the semiconductor stack during the forming of the semiconductor stack. The method further includes patterning the semiconductor stack to form a fin structure and forming a dummy gate stack to wrap around a portion of the fin structure. In addition, the method includes removing the dummy gate stack and the sacrificial layers to release multiple semiconductor nanostructures made up of remaining portions of the semiconductor layers. The method includes forming a metal gate stack to wrap around the semiconductor nanostructures.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 1, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Te-An YU, Hung-Ju CHOU, Jet-Rung CHANG, Yen-Po LIN, Jiun-Ming KUO
  • Publication number: 20220375756
    Abstract: The present disclosure provides methods of forming semiconductor devices. A method according to the present disclosure includes receiving a workpiece that includes a stack of semiconductor layers, depositing a first pad oxide layer on a germanium-containing top layer of the stack, depositing a second pad oxide layer on the first pad oxide layer, depositing a pad nitride layer on the second pad oxide layer, and patterning the stack using the first pad oxide layer, the second pad oxide layer, and the pad nitride layer as a hard mask layer. The depositing of the first pad oxide layer includes a first oxygen plasma power and the depositing of the second pad oxide layer includes a second oxygen plasma power greater than the first oxygen plasma power.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 24, 2022
    Inventors: Shih-Hao Fu, Hung-Ju Chou, Che-Lun Chang, Jiun-Ming Kuo, Yuan-Ching Peng, Sung-En Lin, Nung-Che Cheng, Chunyao Wang