Patents by Inventor Hung-Mo Yang

Hung-Mo Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9893190
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: February 13, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Keun-Nam Kim, Hung-Mo Yang, Choong-Ho Lee
  • Publication number: 20170229581
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Inventors: Keun-Nam Kim, Hung-Mo YANG, Choong-Ho LEE
  • Patent number: 9640665
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: May 2, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Keun-Nam Kim, Hung-Mo Yang, Choong-Ho Lee
  • Publication number: 20160056296
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Application
    Filed: November 3, 2015
    Publication date: February 25, 2016
    Inventors: Keun-Nam Kim, Hung-Mo YANG, Choong-Ho LEE
  • Patent number: 9196733
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: November 24, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Keun-Nam Kim, Hung-Mo Yang, Choong-Ho Lee
  • Publication number: 20150228796
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Application
    Filed: April 24, 2015
    Publication date: August 13, 2015
    Inventors: Keun-Nam Kim, Hung-Mo YANG, Choong-Ho LEE
  • Patent number: 9018697
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: April 28, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Keun-Nam Kim, Hung-Mo Yang, Choong-Ho Lee
  • Patent number: 8264034
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: September 11, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Keun-Nam Kim, Hung-Mo Yang, Choong-Ho Lee
  • Publication number: 20120181604
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Application
    Filed: March 26, 2012
    Publication date: July 19, 2012
    Inventors: Keun-Nam Kim, Hung-Mo Yang, Choong-Ho Lee
  • Patent number: 8053833
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Keun-Nam Kim, Hung-Mo Yang, Choong-Ho Lee
  • Publication number: 20110260227
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Application
    Filed: July 7, 2011
    Publication date: October 27, 2011
    Inventors: Keun-Nam Kim, Hung-Mo Yang, Choong-Ho Lee
  • Patent number: 7868380
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: January 11, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Keun-Nam Kim, Hung-Mo Yang, Choong-Ho Lee
  • Publication number: 20100065907
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Application
    Filed: November 20, 2009
    Publication date: March 18, 2010
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Keun-Nam Kim, Hung-Mo Yang, Choong-Ho Lee
  • Publication number: 20090081566
    Abstract: A wafer that is less susceptible to chipping or peeling during a sawing process is disclosed. The wafer includes a plurality of chips, scribe lanes formed between the plurality of chips, and a passivation film, which is formed on the plurality of chips and the scribe lanes and has a plurality of perforations, e.g. slit patterns engraved on each scribe lane. A photolithography reticle and method of manufacturing the wafer are also provided.
    Type: Application
    Filed: September 23, 2008
    Publication date: March 26, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Hung-Mo Yang
  • Patent number: 7494895
    Abstract: A method of fabricating a 3D field effect transistor employing a hard mask spacer includes forming a hard mask pattern on a semiconductor substrate. The semiconductor substrate is etched using the hard mask pattern as an etch mask to form a trench that defines an active region. A trench oxide layer and a liner are sequentially formed on the semiconductor substrate, and an isolation layer is formed to fill the trench. An upper surface of the isolation layer may by recessed below an upper surface of the hard mask pattern. A hard mask spacer is formed that covers sidewalls of the hard mask pattern. Some portions of the isolation layer where an etching is blocked by the hard mask spacer remain on sidewalls of the channel region, respectively, thereby preventing the liner from being damaged by etching.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: February 24, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hung-Mo Yang, Keun-Nam Kim
  • Patent number: 7436047
    Abstract: A wafer that is less susceptible to chipping or peeling during a sawing process is disclosed. The wafer includes a plurality of chips, scribe lanes formed between the plurality of chips, and a passivation film, which is formed on the plurality of chips and the scribe lanes and has a plurality of perforations, e.g. slit patterns engraved on each scribe lane. A photolithography reticle and method of manufacturing the wafer are also provided.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: October 14, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hung-Mo Yang
  • Publication number: 20070176245
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Application
    Filed: April 10, 2007
    Publication date: August 2, 2007
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Keun-Nam KIM, Hung-Mo YANG, Choong-Ho LEE
  • Patent number: 7217623
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: May 15, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Keun-Nam Kim, Hung-Mo Yang, Choong-Ho Lee
  • Publication number: 20070057349
    Abstract: A wafer that is less susceptible to chipping or peeling during a sawing process is disclosed. The wafer includes a plurality of chips, scribe lanes formed between the plurality of chips, and a passivation film, which is formed on the plurality of chips and the scribe lanes and has a plurality of perforations, e.g. slit patterns engraved on each scribe lane. A photolithography reticle and method of manufacturing the wafer are also provided.
    Type: Application
    Filed: September 11, 2006
    Publication date: March 15, 2007
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Hung-Mo YANG
  • Publication number: 20050215016
    Abstract: A method of fabricating a 3D field effect transistor employing a hard mask spacer includes forming a hard mask pattern on a semiconductor substrate. The semiconductor substrate is etched using the hard mask pattern as an etch mask to form a trench that defines an active region. A trench oxide layer and a liner are sequentially formed on the semiconductor substrate, and an isolation layer is formed to fill the trench. An upper surface of the isolation layer may by recessed below an upper surface of the hard mask pattern. A hard mask spacer is formed that covers sidewalls of the hard mask pattern. Some portions of the isolation layer where an etching is blocked by the hard mask spacer remain on sidewalls of the channel region, respectively, thereby preventing the liner from being damaged by etching.
    Type: Application
    Filed: March 21, 2005
    Publication date: September 29, 2005
    Inventors: Hung-Mo Yang, Keun-Nam Kim