Patents by Inventor Hung Phi Nguyen

Hung Phi Nguyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210080710
    Abstract: A three-dimensional (3D) microscope includes various insertable components that facilitate multiple imaging and measurement capabilities. These capabilities include Nomarski imaging, polarized light imaging, quantitative differential interference contrast (q-DIC) imaging, motorized polarized light imaging, phase-shifting interferometry (PSI), and vertical-scanning interferometry (VSI).
    Type: Application
    Filed: December 2, 2020
    Publication date: March 18, 2021
    Inventors: James Jianguo Xu, Ken Kinsun Lee, Rusmin Kudinar, Ronny Soetarman, Hung Phi Nguyen, Zhen Hou
  • Patent number: 10884228
    Abstract: A three-dimensional (3D) microscope includes various insertable components that facilitate multiple imaging and measurement capabilities. These capabilities include Nomarski imaging, polarized light imaging, quantitative differential interference contrast (q-DIC) imaging, motorized polarized light imaging, phase-shifting interferometry (PSI), and vertical-scanning interferometry (VSI).
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: January 5, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: James Jianguo Xu, Ken Kinsun Lee, Rusmin Kudinar, Ronny Soetarman, Hung Phi Nguyen, Zhen Hou
  • Publication number: 20200319116
    Abstract: An optical scanning system, including: a radiating source that outputs a light beam, a first time varying beam reflector that reflects the light beam through a scan lens towards a transparent sample, a second time varying beam reflector that reflects the light beam reflected from the transparent sample, a focusing lens that focuses the light beam reflected from the transparent sample, a blocker, and a detector that is irradiated by the one or more selectable portions of the light beam reflected from the transparent sample that pass the blocker. The blocker can be configured to block one or more portions of the light beam reflected from the transparent sample so that one or more selectable portions of the light beam reflected from the transparent sample can pass the blocker.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 8, 2020
    Inventors: Steven W. Meeks, Hung Phi Nguyen, Alireza Shahdoost Moghaddam
  • Patent number: 10767977
    Abstract: An optical scanning system including a radiating source that outputs a light beam, a time varying beam reflector that reflects the light beam through a scan lens towards a transparent sample, a focusing lens configured to be irradiated by light scattered from the transparent sample, and a detector that is irradiated by the light scattered from the transparent sample. The detector outputs a signal that indicates an intensity of light measured by the detector. None of the light scattered from the transparent sample is blocked. The light scattered from the transparent sample is scattered from the top surface of the transparent sample, the bottom surface of the transparent sample, or any location in between the top surface of the transparent sample and the bottom surface of the transparent sample.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: September 8, 2020
    Assignee: Lumina Instruments Inc.
    Inventors: Steven W. Meeks, Hung Phi Nguyen, Alireza Shahdoost Moghaddam
  • Publication number: 20200278192
    Abstract: An optical scanning system including a radiating source that outputs a light beam, a time varying beam reflector that reflects the light beam through a scan lens towards a transparent sample, a focusing lens configured to be irradiated by light scattered from the transparent sample, and a detector that is irradiated by the light scattered from the transparent sample. The detector outputs a signal that indicates an intensity of light measured by the detector. None of the light scattered from the transparent sample is blocked. The light scattered from the transparent sample is scattered from the top surface of the transparent sample, the bottom surface of the transparent sample, or any location in between the top surface of the transparent sample and the bottom surface of the transparent sample.
    Type: Application
    Filed: April 2, 2020
    Publication date: September 3, 2020
    Inventors: Steven W. Meeks, Hung Phi Nguyen, Alireza Shahdoost Moghaddam
  • Patent number: 10648928
    Abstract: An optical scanning system includes a radiating source capable of outputting a light beam, a time varying beam reflector that is configured to reflect the light beam through a scan lens towards a transparent sample at an incident angle that is not more than one degree greater or less than Brewster's angle of the transparent sample, and a focusing lens configured to be irradiated by light scattered from the transparent sample at an angle that is normal to the plane of incidence of the moving irradiated spot on the transparent sample. A first portion of the light beam is scattered from a first surface of the transparent sample and a second portion of the light beam is scattered from a second surface of the transparent sample. A spatial filter is configured to block the second portion of the light beam scattered from the second surface of the transparent sample.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: May 12, 2020
    Assignee: Lumina Instruments Inc.
    Inventors: Steven W. Meeks, Hung Phi Nguyen, Alireza Shahdoost Moghaddam
  • Patent number: 10641713
    Abstract: An optical scanning system includes a radiating source capable of outputting a light beam, a first time varying beam reflector that is configured to reflect the light beam through a scan lens towards a transparent sample at an incident angle that is not more than one degree greater or less than Brewster's angle of the transparent sample, and a second time varying beam reflector that is configured to reflect the light beam reflected from the transparent sample after passing through a de-scan lens onto a phase retardance detector. The output of the phase retardance detector is usable to determine if a defect is present on the transparent sample. The first time varying beam reflector causes a first phase retardance of the light beam and the second time varying beam reflector causes a second phase retardance of the reflected light beam in the opposite direction of the first phase retardance.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: May 5, 2020
    Assignee: Lumina Instruments Inc.
    Inventors: Steven W. Meeks, Hung Phi Nguyen, Alireza Shahdoost Moghaddam
  • Patent number: 10209501
    Abstract: A three-dimensional (3D) microscope for patterned substrate measurement can include an objective lens, a reflected illuminator, a transmitted illuminator, a focusing adjustment device, an optical sensor, and a processor. The focusing adjustment device can automatically adjust the objective lens focus at a plurality of Z steps. The optical sensor can be capable of acquiring images at each of these Z steps. The processor can control the reflected illuminator, the transmitted illuminator, the focusing adjustment device, and the optical sensor. The processor can be configured to capture first and second images at multiple Z steps, the first image with the pattern using the reflected illuminator and the second image without the pattern using one of the reflected illuminator and the transmitted illuminator.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: February 19, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Zhen Hou, James Jianguo Xu, Ken Kinsun Lee, James Nelson Stainton, Hung Phi Nguyen, Rusmin Kudinar, Ronny Soetarman
  • Publication number: 20180356623
    Abstract: A three-dimensional (3D) microscope includes various insertable components that facilitate multiple imaging and measurement capabilities. These capabilities include Nomarski imaging, polarized light imaging, quantitative differential interference contrast (q-DIC) imaging, motorized polarized light imaging, phase-shifting interferometry (PSI), and vertical-scanning interferometry (VSI).
    Type: Application
    Filed: August 7, 2018
    Publication date: December 13, 2018
    Inventors: James Jianguo Xu, Ken Kinsun Lee, Rusmin Kudinar, Ronny Soetaman, Hung Phi Nguyen, Zhen Hou
  • Patent number: 10048480
    Abstract: A three-dimensional (3D) microscope includes various insertable components that facilitate multiple imaging and measurement capabilities. These capabilities include Nomarski imaging, polarized light imaging, quantitative differential interference contrast (q-DIC) imaging, motorized polarized light imaging, phase-shifting interferometry (PSI), and vertical-scanning interferometry (VSI).
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: August 14, 2018
    Assignee: Zeta Instruments, Inc.
    Inventors: James Jianguo Xu, Ken Kinsun Lee, Rusmin Kudinar, Ronny Soetarman, Hung Phi Nguyen, Zhen Hou
  • Publication number: 20160252714
    Abstract: A three-dimensional (3D) microscope for patterned substrate measurement can include an objective lens, a reflected illuminator, a transmitted illuminator, a focusing adjustment device, an optical sensor, and a processor. The focusing adjustment device can automatically adjust the objective lens focus at a plurality of Z steps. The optical sensor can be capable of acquiring images at each of these Z steps. The processor can control the reflected illuminator, the transmitted illuminator, the focusing adjustment device, and the optical sensor. The processor can be configured to capture first and second images at multiple Z steps, the first image with the pattern using the reflected illuminator and the second image without the pattern using one of the reflected illuminator and the transmitted illuminator.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Zhen Hou, James Jianguo Xu, Ken Kinsun Lee, James Nelson Stainton, Hung Phi Nguyen, Rusmin Kudinar, Ronny Soetarman
  • Publication number: 20160253813
    Abstract: A three-dimensional (3D) microscope for patterned substrate measurement can include an objective lens, a reflected illuminator, a transmitted illuminator, a focusing adjustment device, an optical sensor, and a processor. The focusing adjustment device can automatically adjust the objective lens focus at a plurality of Z steps. The optical sensor can be capable of acquiring images at each of these Z steps. The processor can control the reflected illuminator, the transmitted illuminator, the focusing adjustment device, and the optical sensor. The processor can be configured to capture first and second images at multiple Z steps, the first image with the pattern using the reflected illuminator and the second image without the pattern using one of the reflected illuminator and the transmitted illuminator.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Zhen Hou, James Jianguo Xu, Ken Kinsun Lee, James Nelson Stainton, Hung Phi Nguyen, Rusmin Kudinar, Ronny Soetarman
  • Patent number: 9422950
    Abstract: A piston-cylinder actuator includes a unique mount for an absolute-position sensor. The mount is made from a bearing material provides a flexible connection between the sensor mount and the cylinder housing. This flexible connection allows the piston rod to deflect naturally, under its own weight or under other laterally-directed forces, while maintaining the distance and perpendicularity between the sensor and the rod surface, within acceptable limits. The sensor mount is made from a bearing material that will allow it to float directly on the rod surface without scuffing or otherwise damaging the rod surface, particularly the markings or other indicia on that surface. Due to the flexible connection between the sensor mount and the cylinder housing, the proper distance between the sensor and the rod surface can be maintained at all times.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: August 23, 2016
    Assignee: Parker-Hannifin Corporation
    Inventors: John Hartzell, James Cirillo, Dustin Hromyak, Hung phi Nguyen, David B. Crowley, Michael A. Laurich
  • Publication number: 20160231148
    Abstract: A piston-cylinder actuator (20) includes a unique mount (36) for an absolute-position sensor (30). The mount (36) is made from a bearing material provides a flexible connection between the sensor mount (36) and the cylinder housing (40). This flexible connection allows the piston rod (32) to deflect naturally, under its own weight or under other laterally-directed forces, while maintaining the distance and perpendicularity between the sensor (30) and the rod surface (34), within acceptable limits. The sensor mount (36) is made from a bearing material that will allow it to float directly on the rod surface (34) without scuffing or otherwise damaging the rod surface (34), particularly the markings or other indicia on that surface (34). Due to the flexible connection between the sensor mount (36) and the cylinder housing (40), the proper distance between the sensor (30) and the rod surface (34) can be maintained at all times.
    Type: Application
    Filed: April 13, 2016
    Publication date: August 11, 2016
    Applicant: Parker-Hannifin Corporation
    Inventors: John Hartzell, James Cirillo, Dustin Hromyak, Hung phi Nguyen, David B. Crowley, Michael A. Laurich
  • Patent number: 9389408
    Abstract: A three-dimensional (3D) microscope for patterned substrate measurement can include an objective lens, a reflected illuminator, a transmitted illuminator, a focusing adjustment device, an optical sensor, and a processor. The focusing adjustment device can automatically adjust the objective lens focus at a plurality of Z steps. The optical sensor can be capable of acquiring images at each of these Z steps. The processor can control the reflected illuminator, the transmitted illuminator, the focusing adjustment device, and the optical sensor. The processor can be configured to capture first and second images at multiple Z steps, the first image with the pattern using the reflected illuminator and the second image without the pattern using one of the reflected illuminator and the transmitted illuminator.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: July 12, 2016
    Assignee: Zeta Instruments, Inc.
    Inventors: Zhen Hou, James Jianguo Xu, Ken Kinsun Lee, James Nelson Stainton, Hung Phi Nguyen, Rusmin Kudinar, Ronny Soetarman
  • Patent number: 9335207
    Abstract: A sensor includes an enclosure having a housing and a lower cassette that cooperate to provide a sealed volume in which an optical sensor assembly is enclosed and protected. The optical sensor assembly includes a circuit board with a light source and a light detector. The sensor assembly further includes a light pipe that guides light from the sensor onto a target and a lens guides reflected light from the target onto the light detector. Lower ends of the light pipe and the lens are supported by a recess in the lower cassette. Upper ends of the light pipe and the lens are supported by an upper cassette. The upper cassette is positively located and mounted to the circuit board and received in an internal receptacle in the lower cassette. Mounting the lower cassette to the housing encloses the optical sensor assembly in the proper alignment.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: May 10, 2016
    Assignee: Parker-Hannifin Corporation
    Inventors: David Bina, James Cirillo, Laird Daubenspeck, Hung phi Nguyen
  • Patent number: 8976366
    Abstract: A measurement system for monitoring an LED chip surface roughening process is described. A reflective illuminator can run reflectance measurements. A vertical positioning means can adjust a distance between an objective lens and an industrial sample. A horizontal positioning means can move objects in XY plane, and is specifically configured to hold the industrial sample and a reference sample. An optical sensor can acquire images of the industrial sample. A spectrometer can acquire reflectance spectrums of the industrial sample and the reference sample. A processor can control these components. The processor can perform deskew, and calculate an average reflectance and an oscillation amplitude from the reflectance spectrums of the industrial sample.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: March 10, 2015
    Assignee: Zeta Instruments, Inc.
    Inventors: James Jianguo Xu, Ken Kinsun Lee, Rusmin Kudinar, Ronny Soetarman, Hung Phi Nguyen, Zhen Hou
  • Publication number: 20130341496
    Abstract: A sensor includes an enclosure having a housing and a lower cassette that cooperate to provide a sealed volume in which an optical sensor assembly is enclosed and protected. The optical sensor assembly includes a circuit board with a light source and a light detector. The sensor assembly further includes a light pipe that guides light from the sensor onto a target and a lens guides reflected light from the target onto the light detector. Lower ends of the light pipe and the lens are supported by a recess in the lower cassette. Upper ends of the light pipe and the lens are supported by an upper cassette. The upper cassette is positively located and mounted to the circuit board and received in an internal receptacle in the lower cassette. Mounting the lower cassette to the housing encloses the optical sensor assembly in the proper alignment.
    Type: Application
    Filed: February 21, 2012
    Publication date: December 26, 2013
    Applicant: Parker-Hannifin Ccorporation
    Inventors: David Bina, James Cirillo, Laird Daubenspeck, Hung phi Nguyen
  • Publication number: 20130319224
    Abstract: A piston-cylinder actuator includes a unique mount for an absolute-position sensor. The mount is made from a bearing material provides a flexible connection between the sensor mount and the cylinder housing. This flexible connection allows the piston rod to deflect naturally, under its own weight or under other laterally-directed forces, while maintaining the distance and perpendicularity between the sensor and the rod surface, within acceptable limits. The sensor mount is made from a bearing material that will allow it to float directly on the rod surface without scuffing or otherwise damaging the rod surface, particularly the markings or other indicia on that surface. Due to the flexible connection between the sensor mount and the cylinder housing, the proper distance between the sensor and the rod surface can be maintained at all times.
    Type: Application
    Filed: February 21, 2012
    Publication date: December 5, 2013
    Applicant: PARKER-HANNIFIN CORPORATION
    Inventors: John Hartzell, James Cirillo, Dustin Hromyak, Hung phi Nguyen, David B. Crowley, Michael A. Laurich
  • Publication number: 20120327414
    Abstract: A measurement system for monitoring an LED chip surface roughening process is described. A reflective illuminator can run reflectance measurements. A vertical positioning means can adjust a distance between an objective lens and an industrial sample. A horizontal positioning means can move objects in XY plane, and is specifically configured to hold the industrial sample and a reference sample. An optical sensor can acquire images of the industrial sample. A spectrometer can acquire reflectance spectrums of the industrial sample and the reference sample. A processor can control these components. The processor can perform deskew, and calculate an average reflectance and an oscillation amplitude from the reflectance spectrums of the industrial sample.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 27, 2012
    Applicant: Zeta Instruments, Inc.
    Inventors: James Jianguo Xu, Ken Kinsun Lee, Rusmin Kudinar, Ronny Soetarman, Hung Phi Nguyen, Zhen Hou