Patents by Inventor Hung T. Du

Hung T. Du has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7146706
    Abstract: An electric motor has a field assembly, such as a stator, for a dynamoelectric machine has field coils that are wound to a net shape. Lead wires are brought out from the ends of each field coil. The field coils are insulated with insulating sleeves or insulating slot liners. The field coils are assembled with stator core pieces, such as pole pieces and return path pieces, into the stator. The stator core pieces are formed prior to being assembled with the field coils. In an aspect of the invention, the pole pieces and return path pieces are separately formed and then assembled together with the field coils, which have also been separately formed.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: December 12, 2006
    Assignee: Black & Decker Inc.
    Inventors: Hung T. Du, Brandon L. Verbrugge, Earl M. Ortt, Michael J. Agnes, Michael A. Zemlok, Robert G. Kusmierski, David J. Smith
  • Patent number: 7096566
    Abstract: Magnet wires wound in slots in a lamination stack of a dynamoelectric machine are encapsulated, in whole or in part, with plastic. The plastic may be thermally conductive and have features molded therein that enhance heat transfer. The plastic may stiffen the armature and increase its critical speed. Characteristics of the plastic, its geometry and its distribution may be varied to adjust spinning inertia and resonant frequency of the armature. The magnet wires may be compressed into the slots, by application of iso-static pressure or by the pressure of the plastic being molded around them. Larger magnet wire can then be used which increases the power of the electric motor using the armature having the larger magnet wire. A two or three plate mold may be used to mold the plastic around the armature. Balancing features can be molded in place. The plastic can have a base polymer that is a blend of two or more polymers and various thermally conductive fillings.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: August 29, 2006
    Assignee: Black & Decker Inc.
    Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
  • Patent number: 7078843
    Abstract: An electric motor, power tool using the electric motor, and method of making the electric motor includes making a stator by separately forming pole pieces, return path pieces and field coils. The field coils are placed over necks of the pole path pieces and the return path pieces are affixed to the pole pieces. An armature having an outside diameter of at least 0.625 the outside diameter of the stator is placed in the stator. In an aspect, the field coils are formed so that they extend beyond pole tips of the pole pieces.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: July 18, 2006
    Assignee: Black & Decker Inc.
    Inventors: Hung T. Du, Brandon L. Verbrugge, Earl M. Ortt, Michael J. Agnes, John C. Stone, Michael A. Zemlock, Robert G. Kusmierski, David J. Smith
  • Patent number: 7023159
    Abstract: A method and apparatus for braking a motor has a braking power switching device coupled across windings of the motor. To brake the motor, the braking power switching device is cycled on and off.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: April 4, 2006
    Assignee: Black & Decker Inc.
    Inventors: Bhanuprasad V. Gorti, Hung T. Du
  • Patent number: 7013552
    Abstract: An electric motor having an armature which includes a coating of thermally conductive plastic applied in a conventional injection molding process. The armature also includes a fan which is integrally formed from the thermally conductive plastic applied to the armature. This completely eliminates the need to apply one or more coatings of a trickle resin to the armature. It also eliminates the need to separately form and secure a fan by a suitable adhesive to the armature, which together significantly simplifies the manufacturing and cost of the armature. The plastic coating also better fills the spaces between the magnet wires, thus promoting even more efficient cooling and better holding of the magnet wires stationary relative to one another. The thermally conductive plastic coating may be mixed with other suitable materials to provide a density approximately equal to the magnet wires. This eliminates the need to balance the armature after the injection molding step.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: March 21, 2006
    Assignee: Black & Decker Inc.
    Inventor: Hung T. Du
  • Patent number: 6946758
    Abstract: Magnet wires wound in slots in a lamination stack of a dynamoelectric machine are encapsulated, in whole or in part, with thermally conductive plastic. Pre-formed features having a thermal conductivity higher than the thermally conductive plastic are insert molded when the plastic is molded. The pre-formed features may include a finned end cap and a fan. Alternatively, end domes of the plastic over end coils of the wound magnet wires have a metallic layer on them, such as by being metallized. The end domes can be formed with features which are also metallized. The thermally conductive plastic can have a phase change additive in it. The magnet wires can have a layer of heat activated adhesive that is activated when the plastic is molded. Slots in the lamination stack can include slot liners formed of thermally conductive plastic. A fan can be formed when the thermally conductive plastic is molded to encapsulate the magnet wires.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: September 20, 2005
    Assignee: Black & Decker Inc.
    Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, Earl M. Ortt, John C. Stone
  • Patent number: 6838797
    Abstract: A flux ring for a motor of a power tool has an annular housing which fits inside the motor can of the motor. At least one magnet is on the ring. The at least one magnet includes a portion formed from an isotropic magnetic material and a portion formed from an anisotropic magnetic material. Preferably, the isotropic magnetic materials is sandwiched by the anisotropic magnetic material. The magnets being molded onto the flux ring in a two shot process.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: January 4, 2005
    Assignee: Black & Decker Inc.
    Inventor: Hung T. Du
  • Patent number: 6781267
    Abstract: A power tool has a motor with end caps secured by cold forming to the motor. The end caps include bearings retained in the end cap by deformation of the end cap. The motor includes an armature shaft which is staked to retain laminates as well as a retainer on the shaft. Also, a pinion gear with a shoulder which limits movement of the shaft in the motor. A fan is on the motor armature which is secured by an adhesive which changes color during assembly. The motor also includes a demagnetization member which increases resistance to demagnetization due to elevated temperature, as well as armature reaction field.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: August 24, 2004
    Assignee: Black & Decker Inc.
    Inventors: Earl M. Ortt, Brandon Verbrugge, Hung T. Du, Morris R. Davies
  • Patent number: 6769168
    Abstract: A flux ring for a motor of a power tool has an annular housing which fits inside the motor can of the motor. At least one magnet is on the ring. The at least one magnet includes a portion formed from an isotropic magnetic material and a portion formed from an anisotropic magnetic material. Preferably, the isotropic magnetic material is sandwiched by the anisotropic magnetic material. The magnets being molded onto the flux ring in a two shot process.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: August 3, 2004
    Assignee: Black & Decker Inc.
    Inventor: Hung T. Du
  • Patent number: 6744170
    Abstract: A brush assembly for an electric motor has a base which secures the brush assembly to a motor spider. A brush housing is associated with the base and has first and second open ends. A brush defining an axis is movably positioned in the housing between the first and second open ends. The brush extends from one of the open ends of the housing. The brush includes a surface which is at a desired angle with respect to the brush axis. A biasing member exerts a force on the brush to bias the brush into an electrical connection with a commutator. An electrical connector electrically couples the brush to provide an electrical connection between the commutator and a power supply.
    Type: Grant
    Filed: February 6, 1998
    Date of Patent: June 1, 2004
    Assignee: Black & Decker Inc.
    Inventors: Hung T. Du, Todd A. Hagan
  • Patent number: 6735846
    Abstract: A method for forming an electric motor includes providing a stator and an armature having a lamination stack with slots therein in which magnet wires are wound. Thermally conductive plastic is molded over at least a portion of the armature to at least partially encase the magnet wires and to mold a fan. The fan is molded without any portion of the fan extending into the slots in the lamination stack of the armature to increase the volume in the slots in which the magnet wires can be wound and the magnet wires are wound in this increased volume when they are wound in the slots in the lamination stack to increase a power rating of the electric motor beyond what is normally attainable with a fan component having portions extending into the slots in the lamination stack.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: May 18, 2004
    Assignee: Black & Decker Inc.
    Inventor: Hung T. Du
  • Publication number: 20040075408
    Abstract: A method and apparatus for braking a motor has a braking power switching device coupled across windings of the motor. To brake the motor, the braking power switching device is cycled on and off.
    Type: Application
    Filed: August 25, 2003
    Publication date: April 22, 2004
    Inventors: Bhanuprasad V. Gorti, Hung T. Du
  • Publication number: 20040056538
    Abstract: Magnet wires wound in slots in a lamination stack of a dynamoelectric machine are encapsulated, in whole or in part, with plastic. The plastic may be thermally conductive and have features molded therein that enhance heat transfer. The plastic may stiffen the armature and increase its critical speed. Characteristics of the plastic, its geometry and its distribution may be varied to adjust spinning inertia and resonant frequency of the armature. The magnet wires may be compressed into the slots, by application of iso-static pressure or by the pressure of the plastic being molded around them. Larger magnet wire can then be used which increases the power of the electric motor using the armature having the larger magnet wire. A two or three plate mold may be used to mold the plastic around the armature. Balancing features can be molded in place. The plastic can have a base polymer that is a blend of two or more polymers and various thermally conductive fillings.
    Type: Application
    Filed: July 10, 2003
    Publication date: March 25, 2004
    Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
  • Publication number: 20040056539
    Abstract: An electric motor having an armature which includes a coating of thermally conductive plastic applied in a conventional injection molding process. The armature also includes a fan which is integrally formed from the thermally conductive plastic applied to the armature. This completely eliminates the need to apply one or more coatings of a trickle resin to the armature. It also eliminates the need to separately form and secure a fan by a suitable adhesive to the armature, which together significantly simplifies the manufacturing and cost of the armature. The plastic coating also better fills the spaces between the magnet wires, thus promoting even more efficient cooling and better holding of the magnet wires stationary relative to one another. The thermally conductive plastic coating may be mixed with other suitable materials to provide a density approximately equal to the magnet wires. This eliminates the need to balance the armature after the injection molding step.
    Type: Application
    Filed: October 27, 2003
    Publication date: March 25, 2004
    Inventor: Hung T. Du
  • Publication number: 20040056537
    Abstract: Magnet wires wound in slots in a lamination stack of a dynamoelectric machine are encapsulated, in whole or in part, with thermally conductive plastic. Pre-formed features having a thermal conductivity higher than the thermally conductive plastic are insert molded when the plastic is molded. The pre-formed features may include a finned end cap and a fan. Alternatively, end domes of the plastic over end coils of the wound magnet wires have a metallic layer on them, such as by being metallized. The end domes can be formed with features which are also metallized. The thermally conductive plastic can have a phase change additive in it. The magnet wires can have a layer of heat activated adhesive that is activated when the plastic is molded. Slots in the lamination stack can include slot liners formed of thermally conductive plastic. A fan can be formed when the thermally conductive plastic is molded to encapsulate the magnet wires.
    Type: Application
    Filed: July 10, 2003
    Publication date: March 25, 2004
    Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, Earl M. Ortt, John C. Stone
  • Publication number: 20040032179
    Abstract: A flux ring for a motor of a power tool has an annular housing which fits inside the motor can of the motor. At least one magnet is on the ring. The at least one magnet includes a portion formed from an isotropic magnetic material and a portion formed from an anisotropic magnetic material. Preferably, the isotropic magnetic materials is sandwiched by the anisotropic magnetic material. The magnets being molded onto the flux ring in a two shot process.
    Type: Application
    Filed: August 4, 2003
    Publication date: February 19, 2004
    Inventor: Hung T Du
  • Publication number: 20040012271
    Abstract: An electric motor having an armature which includes a coating of thermally conductive plastic applied in a conventional injection molding process. The armature also includes a fan which is integrally formed from the thermally conductive plastic applied to the armature. This completely eliminates the need to apply one or more coatings of a trickle resin to the armature. It also eliminates the need to separately form and secure a fan by a suitable adhesive to the armature, which together significantly simplifies the manufacturing and cost of the armature. The plastic coating also better fills the spaces between the magnet wires, thus promoting even more efficient cooling and better holding of the magnet wires stationary relative to one another. The thermally conductive plastic coating may be mixed with other suitable materials to provide a density approximately equal to the magnet wires. This eliminates the need to balance the armature after the injection molding step.
    Type: Application
    Filed: February 12, 2003
    Publication date: January 22, 2004
    Inventor: Hung T. Du
  • Patent number: 6522042
    Abstract: A power tool includes a flux ring with an annular member. At least one molded magnet is received on the annular member. An anchor is on the annular member to retain the at least one magnet on the annular member. The anchor is unitarily formed with the annular member to receive the magnet.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: February 18, 2003
    Assignee: Black & Decker Inc.
    Inventors: Hung T. Du, Earl M. Ortt, Robert J. Marcinkowski, Brandon Verbrugge, Michael Kunz
  • Publication number: 20030011264
    Abstract: A flux ring for a motor of a power tool has an annular housing which fits inside the motor can of the motor. At least one magnet is on the ring. The at least one magnet includes a portion formed from an isotropic magnetic material and a portion formed from an anisotropic magnetic material. Preferably, the isotropic magnetic material is sandwiched by the anisotropic magnetic material. The magnets being molded onto the flux ring in a two shot process.
    Type: Application
    Filed: September 13, 2002
    Publication date: January 16, 2003
    Inventor: Hung T. Du
  • Publication number: 20020190583
    Abstract: A power tool has a motor with end caps secured by cold forming to the motor. The end caps include bearings retained in the end cap by deformation of the end cap. The motor includes an armature shaft which is staked to retain laminates as well as a retainer on the shaft. Also, a pinion gear with a shoulder which limits movement of the shaft in the motor. A fan is on the motor armature which is secured by an adhesive which changes color during assembly. The motor also includes a demagnetization member which increases resistance to demagnetization due to elevated temperature, as well as armature reaction field.
    Type: Application
    Filed: June 12, 2002
    Publication date: December 19, 2002
    Inventors: Earl M. Ortt, Brandon Verbrugge, Hung T. Du, Morris Davies