Patents by Inventor Hung-Yi Huang
Hung-Yi Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12255070Abstract: In a semiconductor structure, a first conductive feature is formed in a trench by PVD and a glue layer is then deposited on the first conductive feature in the trench before CVD deposition of a second conductive feature there-over. The first conductive feature acts as a protection layer to keep silicide from being damaged by later deposition of metal or a precursor by CVD. The glue layer extends along the extent of the sidewall to enhance the adhesion of the second conductive features to the surrounding dielectric layer.Type: GrantFiled: September 30, 2021Date of Patent: March 18, 2025Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Min-Hsuan Lu, Kan-Ju Lin, Lin-Yu Huang, Sheng-Tsung Wang, Hung-Yi Huang, Chih-Wei Chang, Ming-Hsing Tsai, Chih-Hao Wang
-
Publication number: 20250062232Abstract: A method includes forming a conductive layer over a first dielectric layer; etching a recess in the conductive layer, wherein the recess exposes a top surface of the first dielectric layer; selectively depositing a capping layer on exposed sidewalls of the conductive layer within the recess; depositing a liner on the capping layer; forming a sacrificial material in the recess; and forming a second dielectric layer on the sacrificial material and on sidewalls of the recess; and after forming the second dielectric layer, performing a thermal process to remove the sacrificial material.Type: ApplicationFiled: December 5, 2023Publication date: February 20, 2025Inventors: Ming-Chou Chiang, Chih-Yi Chang, Hung-Yi Huang
-
Patent number: 12199656Abstract: A screen protection member includes a protection film and a frame. The protection film includes a bonding surface. The frame is fastened to a peripheral region of the bonding surface by surrounding the peripheral region. The frame has at least one notch group. A single notch group includes two notches that are disposed opposite to each other. The at least one notch group divides the frame into at least two frame parts that are spaced apart from each other.Type: GrantFiled: May 19, 2020Date of Patent: January 14, 2025Assignee: HUAWEI TECHNOLOGIES CO., LTD.Inventors: Jenhui Liao, Hung-Yi Huang
-
Publication number: 20240413211Abstract: Device-level interconnects having high thermal stability for stacked device structures are disclosed herein. An exemplary stacked semiconductor structure includes an upper source/drain contact disposed on an upper epitaxial source/drain, a lower source/drain contact disposed on a lower epitaxial source/drain, and a source/drain via connected to the upper source/drain contact and the lower source/drain contact. The source/drain via is disposed on the upper source/drain contact, the source/drain via extends below the upper source/drain contact, and the source/drain via includes ruthenium and aluminum. In some embodiments, the source/drain via includes a ruthenium plug wrapped by an aluminum liner. In some embodiments, the source/drain via includes a ruthenium aluminide plug. In some embodiments, the source/drain via includes a ruthenium plug wrapped by a ruthenium aluminide liner. In some embodiments, the source/drain via extends below a top of the lower epitaxial source/drain.Type: ApplicationFiled: November 28, 2023Publication date: December 12, 2024Inventors: Wei-Yip Loh, Liang-Yueh Ou Yang, Hung-Yi Huang, Harry Chien, Chun-Chieh Lin
-
Publication number: 20240404876Abstract: Semiconductor devices and methods of manufacturing are provided. In some embodiments the method includes depositing an etch stop layer over a first hard mask material, the first hard mask material over a gate stack, depositing an interlayer dielectric over the etch stop layer, forming a first opening through the interlayer dielectric, the etch stop layer, and the first hard mask material, the first opening exposing a conductive portion of the gate stack, and treating sidewalls of the first opening with a first dopant to form a first treated region within the interlayer dielectric, a second treated region within the etch stop layer, a third treated region within the first hard mask material, and a fourth treated region within the conductive portion, wherein after the treating the fourth treated region has a higher concentration of the first dopant than the first treated region.Type: ApplicationFiled: July 30, 2024Publication date: December 5, 2024Inventors: Kan-Ju Lin, Chien Chang, Chih-Shiun Chou, Tai Min Chang, Yi-Ning Tai, Hung-Yi Huang, Chih-Wei Chang, Ming-Hsing Tsai, Lin-Yu Huang
-
Publication number: 20240387288Abstract: Techniques described herein enable respective (different) types of metal silicide layers to be formed for p-type source/drain regions and n-type source/drain regions in a selective manner. For example, a p-type metal silicide layer may be selectively formed over a p-type source/drain region (e.g., such that the p-type metal silicide layer is not formed over the n-type source/drain region) and an n-type metal silicide layer may be formed over the n-type source/drain region (which may be selective or non-selective). This provides a low Schottky barrier height between the p-type metal silicide layer and the p-type source/drain region, as well as a low Schottky barrier height between the n-type metal silicide layer and the n-type source/drain region. This reduces the contact resistance for both p-type source/drain regions and n-type source/drain regions.Type: ApplicationFiled: July 26, 2024Publication date: November 21, 2024Inventors: Wei-Yip LOH, Yan-Ming TSAI, Yi-Ning TAI, Raghunath PUTIKAM, Hung-Yi HUANG, Hung-Hsu CHEN, Chih-Wei CHANG
-
Publication number: 20240379423Abstract: A barrier layer is formed in a portion of a thickness of sidewalls in a recess prior to formation of an interconnect structure in the recess. The barrier layer is formed in the portion of the thickness of the sidewalls by a plasma-based deposition operation, in which a precursor reacts with a silicon-rich surface to form the barrier layer. The barrier layer is formed in the portion of the thickness of the sidewalls in that the precursor consumes a portion of the silicon-rich surface of the sidewalls as a result of the plasma treatment. This enables the barrier layer to be formed in a manner in which the cross-sectional width reduction in the recess from the barrier layer is minimized while enabling the barrier layer to be used to promote adhesion in the recess.Type: ApplicationFiled: July 25, 2024Publication date: November 14, 2024Inventors: Chien CHANG, Min-Hsiu HUNG, Yu-Hsiang LIAO, Yu-Shiuan WANG, Tai Min CHANG, Kan-Ju LIN, Chih-Shiun CHOU, Hung-Yi HUANG, Chih-Wei CHANG, Ming-Hsing TSAI
-
Publication number: 20240363339Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In a method embodiment, a dielectric layer is formed on a semiconductor substrate. The semiconductor substrate has a source/drain region. An opening is formed through the dielectric layer to the source/drain region. A silicide region is formed on the source/drain region and a barrier layer is formed in the opening along sidewalls of the dielectric layer by a same Plasma-Enhance Chemical Vapor Deposition (PECVD) process.Type: ApplicationFiled: July 12, 2024Publication date: October 31, 2024Inventors: Cheng-Wei Chang, Min-Hsiu Hung, Hung-Yi Huang, Chun Chieh Wang, Yu-Ting Lin
-
Publication number: 20240355741Abstract: The present disclosure describes a method for forming capping layers configured to prevent the migration of out-diffused cobalt atoms into upper metallization layers In some embodiments, the method includes depositing a cobalt diffusion barrier layer on a liner-free conductive structure that includes ruthenium, where depositing the cobalt diffusion barrier layer includes forming the cobalt diffusion barrier layer self-aligned to the liner-free conductive structure. The method also includes depositing, on the cobalt diffusion barrier layer, a stack with an etch stop layer and dielectric layer, and forming an opening in the stack to expose the cobalt diffusion barrier layer. Finally, the method includes forming a conductive structure on the cobalt diffusion barrier layer.Type: ApplicationFiled: July 1, 2024Publication date: October 24, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Shuen-Shin LIANG, Chun-I TSAI, Chih-Wei CHANG, Chun-Hsien HUANG, Hung-Yi HUANG, Keng-Chu LIN, Ken-Yu CHANG, Sung-Li WANG, Chia-Hung CHU, Hsu-Kai CHANG
-
Publication number: 20240347342Abstract: A method includes receiving a structure having a dielectric layer over a conductive feature, wherein the conductive feature includes a second metal. The method further includes etching a hole through the dielectric layer and exposing the conductive feature and depositing a first metal into the hole and in direct contact with the dielectric layer and the conductive feature, wherein the first metal entirely fills the hole. The method further includes annealing the structure such that atoms of the second metal are diffused into grain boundaries of the first metal and into interfaces between the first metal and the dielectric layer. After the annealing, the method further includes performing a chemical mechanical planarization (CMP) process to remove at least a portion of the first metal.Type: ApplicationFiled: June 27, 2024Publication date: October 17, 2024Inventors: Sung-Li Wang, Hung-Yi Huang, Yu-Yun Peng, Mrunal A. Khaderbad, Chia-Hung Chu, Shuen-Shin Liang, Keng-Chu Lin
-
Patent number: 12087575Abstract: Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In a method embodiment, a dielectric layer is formed on a semiconductor substrate. The semiconductor substrate has a source/drain region. An opening is formed through the dielectric layer to the source/drain region. A silicide region is formed on the source/drain region and a barrier layer is formed in the opening along sidewalls of the dielectric layer by a same Plasma-Enhance Chemical Vapor Deposition (PECVD) process.Type: GrantFiled: January 18, 2022Date of Patent: September 10, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Cheng-Wei Chang, Min-Hsiu Hung, Hung-Yi Huang, Chun Chieh Wang, Yu-Ting Lin
-
Patent number: 12087642Abstract: Techniques described herein enable respective (different) types of metal silicide layers to be formed for p-type source/drain regions and n-type source/drain regions in a selective manner. For example, a p-type metal silicide layer may be selectively formed over a p-type source/drain region (e.g., such that the p-type metal silicide layer is not formed over the n-type source/drain region) and an n-type metal silicide layer may be formed over the n-type source/drain region (which may be selective or non-selective). This provides a low Schottky barrier height between the p-type metal silicide layer and the p-type source/drain region, as well as a low Schottky barrier height between the n-type metal silicide layer and the n-type source/drain region. This reduces the contact resistance for both p-type source/drain regions and n-type source/drain regions.Type: GrantFiled: April 28, 2023Date of Patent: September 10, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Wei-Yip Loh, Yan-Ming Tsai, Yi-Ning Tai, Raghunath Putikam, Hung-Yi Huang, Hung-Hsu Chen, Chih-Wei Chang
-
Publication number: 20240274687Abstract: The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, a gate structure over the substrate, a layer of dielectric material over the gate structure, a source/drain (S/D) contact layer formed through and adjacent to the gate structure, and a trench conductor layer over and in contact with the S/D contact layer. The S/D contact layer can include a layer of platinum-group metallic material and a silicide layer formed between the substrate and the layer of platinum-group metallic material. A top width of a top portion of the layer of platinum-group metallic material can be greater than or substantially equal to a bottom width of a bottom portion of the layer of platinum-group metallic material.Type: ApplicationFiled: April 26, 2024Publication date: August 15, 2024Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chia-Hung CHU, Kan-Ju Lin, Hsu-Kai Chang, Chien Chang, Tzu-Pei Chen, Hung-Yi Huang, Sung-Li Wang, Shuen-Shin Liang
-
Patent number: 12057397Abstract: The present disclosure describes a method for forming capping layers configured to prevent the migration of out-diffused cobalt atoms into upper metallization layers In some embodiments, the method includes depositing a cobalt diffusion barrier layer on a liner-free conductive structure that includes ruthenium, where depositing the cobalt diffusion barrier layer includes forming the cobalt diffusion barrier layer self-aligned to the liner-free conductive structure. The method also includes depositing, on the cobalt diffusion barrier layer, a stack with an etch stop layer and dielectric layer, and forming an opening in the stack to expose the cobalt diffusion barrier layer. Finally, the method includes forming a conductive structure on the cobalt diffusion barrier layer.Type: GrantFiled: December 5, 2022Date of Patent: August 6, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Shuen-Shin Liang, Chun-I Tsai, Chih-Wei Chang, Chun-Hsien Huang, Hung-Yi Huang, Keng-Chu Lin, Ken-Yu Chang, Sung-Li Wang, Chia-Hung Chu, Hsu-Kai Chang
-
Patent number: 12051592Abstract: A method includes receiving a structure having a dielectric layer over a conductive feature, wherein the conductive feature includes a second metal. The method further includes etching a hole through the dielectric layer and exposing the conductive feature and depositing a first metal into the hole and in direct contact with the dielectric layer and the conductive feature, wherein the first metal entirely fills the hole. The method further includes annealing the structure such that atoms of the second metal are diffused into grain boundaries of the first metal and into interfaces between the first metal and the dielectric layer. After the annealing, the method further includes performing a chemical mechanical planarization (CMP) process to remove at least a portion of the first metal.Type: GrantFiled: October 25, 2021Date of Patent: July 30, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Sung-Li Wang, Hung-Yi Huang, Yu-Yun Peng, Mrunal A. Khaderbad, Chia-Hung Chu, Shuen-Shin Liang, Keng-Chu Lin
-
Patent number: 12002867Abstract: The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, a gate structure over the substrate, a layer of dielectric material over the gate structure, a source/drain (S/D) contact layer formed through and adjacent to the gate structure, and a trench conductor layer over and in contact with the S/D contact layer. The S/D contact layer can include a layer of platinum-group metallic material and a silicide layer formed between the substrate and the layer of platinum-group metallic material. A top width of a top portion of the layer of platinum-group metallic material can be greater than or substantially equal to a bottom width of a bottom portion of the layer of platinum-group metallic material.Type: GrantFiled: August 27, 2021Date of Patent: June 4, 2024Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chia-Hung Chu, Shuen-Shin Liang, Hsu-Kai Chang, Tzu Pei Chen, Kan-Ju Lin, Chien Chang, Hung-Yi Huang, Sung-Li Wang
-
Publication number: 20240136191Abstract: A method of forming a semiconductor device includes forming source/drain regions on opposing sides of a gate structure, where the gate structure is over a fin and surrounded by a first dielectric layer; forming openings in the first dielectric layer to expose the source/drain regions; selectively forming silicide regions in the openings on the source/drain regions using a plasma-enhanced chemical vapor deposition (PECVD) process; and filling the openings with an electrically conductive material.Type: ApplicationFiled: January 2, 2024Publication date: April 25, 2024Inventors: Min-Hsiu Hung, Chien Chang, Yi-Hsiang Chao, Hung-Yi Huang, Chih-Wei Chang
-
Patent number: 11901183Abstract: A method of forming a semiconductor device includes forming source/drain regions on opposing sides of a gate structure, where the gate structure is over a fin and surrounded by a first dielectric layer; forming openings in the first dielectric layer to expose the source/drain regions; selectively forming silicide regions in the openings on the source/drain regions using a plasma-enhanced chemical vapor deposition (PECVD) process; and filling the openings with an electrically conductive material.Type: GrantFiled: August 9, 2021Date of Patent: February 13, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Min-Hsiu Hung, Chien Chang, Yi-Hsiang Chao, Hung-Yi Huang, Chih-Wei Chang
-
Patent number: D1040776Type: GrantFiled: January 8, 2021Date of Patent: September 3, 2024Assignee: HUAWEI TECHNOLOGIES CO., LTD.Inventors: Liang Chang, Hung-Yi Huang, Jenhui Liao
-
Patent number: D1045888Type: GrantFiled: September 24, 2020Date of Patent: October 8, 2024Assignee: HUAWEI TECHNOLOGIES CO., LTD.Inventors: Lingsong Jin, Hung-Yi Huang, Bin Xie