Patents by Inventor Huoping Xin

Huoping Xin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7282744
    Abstract: A III-nitride electronic device structure including doped material, an active region and a barrier material arranged to suppress transport of dopant from the doped material into the active region, wherein the barrier material comprises high-Al content AlxGayN, wherein x+y=1, and x?0.50. In a specific aspect, AIN is used as a migration/diffusion barrier layer at a thickness of from about 5 to about 200 Angstroms, to suppress flux of magnesium and/or silicon dopant material into the active region of the III-nitride electronic device, e.g., a UV LED optoelectronic device.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: October 16, 2007
    Assignee: Cree, Inc.
    Inventors: Jeffrey S. Flynn, Huoping Xin, George R. Brandes
  • Publication number: 20070029541
    Abstract: A highly efficient III-nitride/II-Oxide light emitting device that has a n++-tunneling layer, which comprises at least one material selected from a group consisting of n++-GaN, n++-InGaN, n++-AlGaN, n++-AlGaInN, n++-ZnO, n++-ZnCdO, n++-ZnMgO, n++-ZnMgCdO, that is deposited on top of the p-layer in a LED structure. After that, a top n-layer is deposited above that n++-tunneling layer that may be a n+-layer and comprises at least one material selected from a group consisting of n+-GaN, n+-InGaN, n+-AlGaN, n+-AlGaInN, n+-ZnO, n+-ZnCdO, n+-ZnMgO, n+-ZnMgCdO or a top n-layer may also be a n++-layer and comprises at least one material selected from a group consisting of n++-GaN, n++-InGaN, n++-AlGaN, n++-AlGaInN, n++-ZnO, n++-ZnCdO, n++-ZnMgO, n++-ZnMgCdO so that the top n-layer is made highly conductive and show very rough surface.
    Type: Application
    Filed: August 4, 2005
    Publication date: February 8, 2007
    Inventors: Huoping Xin, Xingquan Liu, Xiaohong Shi, Chan Choi, Jin Song
  • Publication number: 20060160345
    Abstract: A method to achieve high quality III-nitride epitaxial layers including AlN, AlGaN, GaN, InGaN, and AlInGaN, by supplying group III precursors constantly and group V precursors periodically with the epitaxial growth systems including metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), and molecular beam epitaxy (MBE).
    Type: Application
    Filed: January 14, 2005
    Publication date: July 20, 2006
    Inventors: Xing-Quan Liu, Huoping Xin, Jin Song, Thomas Choo
  • Publication number: 20040222431
    Abstract: A III-nitride electronic device structure including doped material, an active region and a barrier material arranged to suppress transport of dopant from the doped material into the active region, wherein the barrier material comprises high-Al content AlxGayN, wherein x+y=1, and x≧0.50. In a specific aspect, AIN is used as a migration/diffusion barrier layer at a thickness of from about 5 to about 200 Angstroms, to suppress flux of magnesium and/or silicon dopant material into the active region of the III-nitride electronic device, e.g., a UV LED optoelectronic device.
    Type: Application
    Filed: May 6, 2004
    Publication date: November 11, 2004
    Inventors: Jeffrey S. Flynn, Huoping Xin, George R. Brandes